Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Contact-Aided Motion Planning for Tendon-Driven Continuum Robots (2402.14175v1)

Published 21 Feb 2024 in cs.RO

Abstract: Tendon-driven continuum robots (TDCRs), with their flexible backbones, offer the advantage of being used for navigating complex, cluttered environments. However, to do so, they typically require multiple segments, often leading to complex actuation and control challenges. To this end, we propose a novel approach to navigate cluttered spaces effectively for a single-segment long TDCR which is the simplest topology from a mechanical point of view. Our key insight is that by leveraging contact with the environment we can achieve multiple curvatures without mechanical alterations to the robot. Specifically, we propose a search-based motion planner for a single-segment TDCR. This planner, guided by a specially designed heuristic, discretizes the configuration space and employs a best-first search. The heuristic, crucial for efficient navigation, provides an effective cost-to-go estimation while respecting the kinematic constraints of the TDCR and environmental interactions. We empirically demonstrate the efficiency of our planner-testing over 525 queries in environments with both convex and non-convex obstacles, our planner is demonstrated to have a success rate of about 80% while baselines were not able to obtain a success rate higher than 30%. The difference is attributed to our novel heuristic which is shown to significantly reduce the required search space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. M. Russo, S. M. H. Sadati, X. Dong, A. Mohammad, I. D. Walker, C. Bergeles, K. Xu, and D. A. Axinte, “Continuum robots: An overview,” Advanced Intelligent Systems, vol. 5, no. 5, p. 2200367, 2023.
  2. A. Gao, H. Liu, Y. Zhou, Z. Yang, Z. Wang, and H. Li, “A cross-helical tendons actuated dexterous continuum manipulator,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015, pp. 2012–2017.
  3. Y.-J. Kim, S. Cheng, S. Kim, and K. Iagnemma, “Design of a tubular snake-like manipulator with stiffening capability by layer jamming,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 4251–4256.
  4. C. Pogue, P. Rao, Q. Peyron, J. Kim, J. Burgner-Kahrs, and E. Diller, “Multiple curvatures in a tendon-driven continuum robot using a novel magnetic locking mechanism,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022, pp. 472–479.
  5. M. B. Wooten and I. D. Walker, “Environmental interaction with continuum robots exploiting impact,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 136–10 143, 2022.
  6. M. Selvaggio, L. A. Ramirez, N. D. Naclerio, B. Siciliano, and E. W. Hawkes, “An obstacle-interaction planning method for navigation of actuated vine robots,” in Proceedings - IEEE International Conference on Robotics and Automation, 2020, pp. 3227–3233.
  7. J. D. Greer, L. H. Blumenschein, R. Alterovitz, E. W. Hawkes, and A. M. Okamura, “Robust navigation of a soft growing robot by exploiting contact with the environment,” The International Journal of Robotics Research, vol. 39, no. 14, pp. 1724–1738, 2020.
  8. F. Fuentes and L. H. Blumenschein, “Mapping unknown environments through passive deformation of soft, growing robots,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2023, pp. 2522–2527.
  9. L. Pfotzer, S. Klemm, A. Roennau, J. Zöllner, and R. Dillmann, “Autonomous navigation for reconfigurable snake-like robots in challenging, unknown environments,” Robotics and Autonomous Systems, vol. 89, pp. 123–135, 2017.
  10. M. S. Saleem, R. Sood, S. Onodera, R. Arora, H. Kanazawa, and M. Likhachev, “Search-based Path Planning for a High Dimensional Manipulator in Cluttered Environments Using Optimization-based Primitives,” IEEE International Conference on Intelligent Robots and Systems, pp. 8301–8308, 2021.
  11. A. Singh, Anshul, C. Gong, and H. Choset, “Modelling and path planning of snake robot in cluttered environment,” in International Conference on Reconfigurable Mechanisms and Robots (ReMAR), 2018, pp. 1–6.
  12. X. Wang, M. Bilsky, and S. Bhattacharya, “Search-based configuration planning and motion control algorithms for a snake-like robot performing load-intensive operations,” Autonomous Robots, vol. 45, no. 8, pp. 1047–1076, 2021.
  13. M. C. Yip and D. B. Camarillo, “Model-less feedback control of continuum manipulators in constrained environments,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 880–889, 2014.
  14. Z. Zhang, J. Dequidt, J. Back, H. Liu, and C. Duriez, “Motion Control of Cable-Driven Continuum Catheter Robot Through Contacts,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1852–1859, 2019.
  15. E. Coevoet, A. Escande, and C. Duriez, “Optimization-based inverse model of soft robots with contact handling,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1413–1419, 2017.
  16. N. Naughton, J. Sun, A. Tekinalp, T. Parthasarathy, G. Chowdhary, and M. Gazzola, “Elastica: A compliant mechanics environment for soft robotic control,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3389–3396, 2021.
  17. K. P. Ashwin, S. Kanti, and A. Ghosal, “Profile and contact force estimation of cable-driven continuum robots in presence of obstacles,” Mechanism and Machine Theory, vol. 164, p. 104404, 2021. [Online]. Available: https://doi.org/10.1016/j.mechmachtheory.2021.104404
  18. P. Rao, Q. Peyron, S. Lilge, and J. Burgner-Kahrs, “How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance,” Frontiers in Robotics and AI, vol. 7, p. 223, 2021.
  19. B. J. Cohen, M. Phillips, and M. Likhachev, “Planning single-arm manipulations with n-arm robots,” in Robotics: Science and Systems, 2014.
  20. M. Fu, O. Salzman, and R. Alterovitz, “Toward certifiable motion planning for medical steerable needles,” in Robotics: Science and Systems, 2021.
  21. J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles,” Algorithmica, pp. 122–155, 1993.
  22. P. A. Dow and R. E. Korf, “Duplicate avoidance in depth-first search with applications to treewidth.” in International Joint Conferences on Artificial Intelligence (IJCAI), 2009, pp. 480–485.
  23. R. J. Webster and B. A. Jones, “Design and kinematic modeling of constant curvature continuum robots: A review,” International Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010.
  24. R. M. Grassmann, C. Shentu, T. Hamoda, P. T. Dewi, and J. Burgner-Kahrs, “Open continuum robotics–one actuation module to create them all,” arXiv preprint arXiv:2304.11850, 2023.
  25. D. Halperin, O. Salzman, and M. Sharir, “Algorithmic motion planning,” in Handbook of Discrete and Computational Geometry, 2017, pp. 1311–1342.
  26. B. J. Cohen, S. Chitta, and M. Likhachev, “Search-based planning for manipulation with motion primitives,” in IEEE International Conference on Robotics and Automation, 2010, pp. 2902–2908.
  27. W. Du, S. Kim, O. Salzman, and M. Likhachev, “Escaping local minima in search-based planning using soft duplicate detection,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2019, pp. 2365–2371.
  28. N. Maray, A. Vemula, and M. Likhachev, “Improved soft duplicate detection in search-based motion planning,” in International Conference on Robotics and Automation, 2022, pp. 5792–5798.
  29. S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev, “Multi-heuristic A*,” Int. J. Robotics Res., vol. 35, no. 1-3, pp. 224–243, 2016.
  30. F. Islam, O. Salzman, and M. Likhachev, “Online, interactive user guidance for high-dimensional, constrained motion planning,” in International Joint Conference on Artificial Intelligence, IJCAI, 2018, pp. 4921–4928.
  31. P. Rao, Q. Peyron, and J. Burgner-Kahrs, “Shape representation and modeling of tendon-driven continuum robots using euler arc splines,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8114–8121, 2022.
  32. M. Fu, K. Solovey, O. Salzman, and R. Alterovitz, “Resolution-optimal motion planning for steerable needles,” in International Conference on Robotics and Automation, ICRA, 2022, pp. 9652–9659.
  33. M. Fu, A. Kuntz, O. Salzman, and R. Alterovitz, “Asymptotically optimal inspection planning via efficient near-optimal search on sampled roadmaps,” Int. J. Robotics Res., vol. 42, no. 4-5, pp. 150–175, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.