Carrollian Amplitudes from Strings (2402.14062v2)
Abstract: Carrollian holography is supposed to describe gravity in four-dimensional asymptotically flat space-time by the three-dimensional Carrollian CFT living at null infinity. We transform superstring scattering amplitudes into the correlation functions of primary fields of Carrollian CFT depending on the three-dimensional coordinates of the celestial sphere and a retarded time coordinate. The power series in the inverse string tension is converted to a whole tower of both UV and IR finite descendants of the underlying field-theoretical Carrollian amplitude. We focus on four-point amplitudes involving gauge bosons and gravitons in type I open superstring theory and in closed heterotic superstring theory at the tree-level. We also discuss the limit of infinite retarded time coordinates, where the string world-sheet becomes celestial.
- A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” [arXiv:1703.05448 [hep-th]].
- A.M. Raclariu, “Lectures on Celestial Holography,” [arXiv:2107.02075 [hep-th]].
- S. Pasterski, “Lectures on celestial amplitudes,” Eur. Phys. J. C 81, no.12, 1062 (2021) doi:10.1140/epjc/s10052-021-09846-7 [arXiv:2108.04801 [hep-th]].
- S. Pasterski, M. Pate and A.M. Raclariu, “Celestial Holography,” [arXiv:2111.11392 [hep-th]].
- L. Donnay, “Celestial holography: An asymptotic symmetry perspective,” [arXiv:2310.12922 [hep-th]].
- S. Pasterski and S.H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D 96, no.6, 065022 (2017) doi:10.1103/PhysRevD.96.065022 [arXiv:1705.01027 [hep-th]].
- S. Pasterski, S.H. Shao and A. Strominger, “Gluon Amplitudes as 2d Conformal Correlators,” Phys. Rev. D 96, no.8, 085006 (2017) doi:10.1103/PhysRevD.96.085006 [arXiv:1706.03917 [hep-th]].
- L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, “Carrollian Perspective on Celestial Holography,” Phys. Rev. Lett. 129, no.7, 071602 (2022) doi:10.1103/PhysRevLett.129.071602 [arXiv:2202.04702 [hep-th]].
- A. Bagchi, S. Banerjee, R. Basu and S. Dutta, “Scattering Amplitudes: Celestial and Carrollian,” Phys. Rev. Lett. 128, no.24, 241601 (2022) doi:10.1103/PhysRevLett.128.241601 [arXiv:2202.08438 [hep-th]].
- L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, “Bridging Carrollian and celestial holography,” Phys. Rev. D 107, no.12, 126027 (2023) doi:10.1103/PhysRevD.107.126027 [arXiv:2212.12553 [hep-th]].
- S. Banerjee, S. Ghosh, P. Pandey and A. P. Saha, “Modified celestial amplitude in Einstein gravity,” JHEP 03, 125 (2020) doi:10.1007/JHEP03(2020)125 [arXiv:1909.03075 [hep-th]].
- S. Banerjee, S. Ghosh and R. Gonzo, “BMS symmetry of celestial OPE,” JHEP 04, 130 (2020) doi:10.1007/JHEP04(2020)130 [arXiv:2002.00975 [hep-th]].
- J. Salzer, “An embedding space approach to Carrollian CFT correlators for flat space holography,” JHEP 10, 084 (2023) doi:10.1007/JHEP10(2023)084 [arXiv:2304.08292 [hep-th]].
- K. Nguyen, “Carrollian conformal correlators and massless scattering amplitudes,” JHEP 01, 076 (2024) doi:10.1007/JHEP01(2024)076 [arXiv:2311.09869 [hep-th]].
- L. Mason, R. Ruzziconi and A. Yelleshpur Srikant, “Carrollian Amplitudes and Celestial Symmetries,” [arXiv:2312.10138 [hep-th]].
- W.B. Liu, J. Long and X.Q. Ye, “Feynman rules and loop structure of Carrollian amplitude,” [arXiv:2402.04120 [hep-th]].
- E. Have, K. Nguyen, S. Prohazka and J. Salzer, “Massive carrollian fields at timelike infinity,” [arXiv:2402.05190 [hep-th]].
- S. Stieberger and T.R. Taylor, “Strings on Celestial Sphere,” Nucl. Phys. B 935, 388-411 (2018) doi:10.1016/j.nuclphysb.2018.08.019 [arXiv:1806.05688 [hep-th]].
- W.B. Liu and J. Long, “Symmetry group at future null infinity: Scalar theory,” Phys. Rev. D 107, no.12, 126002 (2023) doi:10.1103/PhysRevD.107.126002 [arXiv:2210.00516 [hep-th]].
- S. Stieberger and T.R. Taylor, “New relations for Einstein–Yang–Mills amplitudes,” Nucl. Phys. B 913, 151-162 (2016) doi:10.1016/j.nuclphysb.2016.09.014 [arXiv:1606.09616 [hep-th]].
- H. Kawai, D.C. Lewellen and S.H.H. Tye, “A Relation Between Tree Amplitudes of Closed and Open Strings,” Nucl. Phys. B 269, 1-23 (1986) doi:10.1016/0550-3213(86)90362-7
- M.B. Green and J.H. Schwarz, “Supersymmetrical Dual String Theory. 2. Vertices and Trees,” Nucl. Phys. B 198, 252-268 (1982) doi:10.1016/0550-3213(82)90556-9
- J. Sondow and S.A. Zlobin, “Integrals over polytopes, multiple zeta values and polylogarithms, and Euler’s constant,” Mathematical Notes 84 (2008) 568-583.
- F. Brown and C. Dupont, “Single-valued integration and superstring amplitudes in genus zero,” Commun. Math. Phys. 382, no.2, 815-874 (2021) doi:10.1007/s00220-021-03969-4 [arXiv:1910.01107 [math.NT]].
- K.S. Kölbig, “Nielsen’s generalized polylogarithms,” SIAM J. Math. Anal. 17, 1232-1258 (1986) doi:10.1137/0517086
- K.S. Kölbig, J.A. Mignoco and E. Remiddi, “On Nielsen’s Generalized Polylogarithms And Their Numerical Calculation,” CERN-DD-CO-69-5.
- V. Adamchik, “On Stirling numbers and Euler sums,” J. Comput. Appl. Math. 79 (1997) 119–130.
- J.M. Borwein, D.M. Bradley and D.J. Broadhurst, “Evaluations of k𝑘kitalic_k–fold Euler/Zagier sums: A Compendium of results for arbitrary k𝑘kitalic_k,” [arXiv:hep-th/9611004 [hep-th]].
- V.G. Drinfeld, “On quasitriangular quasi-Hopf algebras and a group closely connected with Gal(Q¯/Q)𝐺𝑎𝑙¯𝑄𝑄Gal(\bar{Q}/Q)italic_G italic_a italic_l ( over¯ start_ARG italic_Q end_ARG / italic_Q ),”. Algebra i Analiz 2:4 (1990),149-181. English transl.: Leningrad Math. J. 2 (1991), 829-860.
- S. Chmutov, S. Duzhin, and J. Mostovoy, “Introduction to Vassiliev Knot Invariants,” Cambridge University Press, 2012.
- D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, “Heterotic String Theory. 2. The Interacting Heterotic String,” Nucl. Phys. B 267, 75-124 (1986) doi:10.1016/0550-3213(86)90146-X
- S. Stieberger, “Closed superstring amplitudes, single-valued multiple zeta values and the Deligne associator,” J. Phys. A 47, 155401 (2014) doi:10.1088/1751-8113/47/15/155401 [arXiv:1310.3259 [hep-th]].
- S. Stieberger and T. R. Taylor, “Closed String Amplitudes as Single-Valued Open String Amplitudes,” Nucl. Phys. B 881, 269-287 (2014) doi:10.1016/j.nuclphysb.2014.02.005 [arXiv:1401.1218 [hep-th]].
- F. Brown, “Single-valued Motivic Periods and Multiple Zeta Values,” SIGMA 2, e25 (2014) doi:10.1017/fms.2014.18 [arXiv:1309.5309 [math.NT]].
- O. Schlotterer, “Amplitude relations in heterotic string theory and Einstein-Yang-Mills,” JHEP 11, 074 (2016) doi:10.1007/JHEP11(2016)074 [arXiv:1608.00130 [hep-th]].
- D.J. Gross and P. F. Mende, “The High-Energy Behavior of String Scattering Amplitudes,” Phys. Lett. B 197, 129-134 (1987) doi:10.1016/0370-2693(87)90355-8
- H.A. González, A. Puhm and F. Rojas, “Loop corrections to celestial amplitudes,” Phys. Rev. D 102, no.12, 126027 (2020) doi:10.1103/PhysRevD.102.126027 [arXiv:2009.07290 [hep-th]].
- N. Arkani-Hamed, M. Pate, A.M. Raclariu and A. Strominger, “Celestial amplitudes from UV to IR,” JHEP 08, 062 (2021) doi:10.1007/JHEP08(2021)062 [arXiv:2012.04208 [hep-th]].
- L. Magnea, “Non-abelian infrared divergences on the celestial sphere,” JHEP 05, 282 (2021) doi:10.1007/JHEP05(2021)282 [arXiv:2104.10254 [hep-th]].
- A. Ball, S.A. Narayanan, J. Salzer and A. Strominger, “Perturbatively exact w1+∞1{}_{1+\infty}start_FLOATSUBSCRIPT 1 + ∞ end_FLOATSUBSCRIPT asymptotic symmetry of quantum self-dual gravity,” JHEP 01, 114 (2022) doi:10.1007/JHEP01(2022)114 [arXiv:2111.10392 [hep-th]].
- K. Costello and N. M. Paquette, “Associativity of One-Loop Corrections to the Celestial Operator Product Expansion,” Phys. Rev. Lett. 129, no.23, 231604 (2022) doi:10.1103/PhysRevLett.129.231604 [arXiv:2204.05301 [hep-th]].
- L. Donnay, K. Nguyen and R. Ruzziconi, “Loop-corrected subleading soft theorem and the celestial stress tensor,” JHEP 09, 063 (2022) doi:10.1007/JHEP09(2022)063 [arXiv:2205.11477 [hep-th]].
- S. Pasterski, “A comment on loop corrections to the celestial stress tensor,” JHEP 01, 025 (2023) doi:10.1007/JHEP01(2023)025 [arXiv:2205.10901 [hep-th]].
- R. Bhardwaj, L. Lippstreu, L. Ren, M. Spradlin, A. Yelleshpur Srikant and A. Volovich, “Loop-level gluon OPEs in celestial holography,” JHEP 11, 171 (2022) doi:10.1007/JHEP11(2022)171 [arXiv:2208.14416 [hep-th]].
- R. Bittleston, “On the associativity of 1-loop corrections to the celestial operator product in gravity,” JHEP 01, 018 (2023) doi:10.1007/JHEP01(2023)018 [arXiv:2211.06417 [hep-th]].
- S. He, P. Mao and X. C. Mao, “Loop corrections versus marginal deformation in celestial holography,” [arXiv:2307.02743 [hep-th]].
- K. Costello, N. M. Paquette and A. Sharma, “Burns space and holography,” JHEP 10, 174 (2023) doi:10.1007/JHEP10(2023)174 [arXiv:2306.00940 [hep-th]].
- L. Donnay, G. Giribet, H. González, A. Puhm and F. Rojas, “Celestial open strings at one-loop,” JHEP 10, 047 (2023) doi:10.1007/JHEP10(2023)047 [arXiv:2307.03551 [hep-th]].
- H. Krishna, “Celestial gluon and graviton OPE at loop level,” [arXiv:2310.16687 [hep-th]].
- S. Banerjee, H. Kulkarni and P. Paul, “Celestial OPE in Self Dual Gravity,” [arXiv:2311.06485 [hep-th]].
- S. Stieberger, T.R. Taylor and B. Zhu, “Celestial Liouville theory for Yang-Mills amplitudes,” Phys. Lett. B 836, 137588 (2023) doi:10.1016/j.physletb.2022.137588 [arXiv:2209.02724 [hep-th]].
- T.R. Taylor and B. Zhu, “Celestial Supersymmetry,” JHEP 06, 210 (2023) doi:10.1007/JHEP06(2023)210 [arXiv:2302.12830 [hep-th]].
- S. Stieberger, T.R. Taylor and B. Zhu, “Yang-Mills as a Liouville theory,” Phys. Lett. B 846, 138229 (2023) doi:10.1016/j.physletb.2023.138229 [arXiv:2308.09741 [hep-th]].
- E. Hijano, “Flat space physics from AdS/CFT,” JHEP 07, 132 (2019) doi:10.1007/JHEP07(2019)132 [arXiv:1905.02729 [hep-th]].
- Y.Z. Li, “Notes on flat-space limit of AdS/CFT,” JHEP 09, 027 (2021) doi:10.1007/JHEP09(2021)027 [arXiv:2106.04606 [hep-th]].
- L.P. de Gioia and A.M. Raclariu, “Eikonal approximation in celestial CFT,” JHEP 03, 030 (2023) doi:10.1007/JHEP03(2023)030 [arXiv:2206.10547 [hep-th]].
- L.P. de Gioia and A.M. Raclariu, “Celestial Sector in CFT: Conformally Soft Symmetries,” [arXiv:2303.10037 [hep-th]].
- A. Bagchi, P. Dhivakar and S. Dutta, “AdS Witten diagrams to Carrollian correlators,” JHEP 04, 135 (2023) doi:10.1007/JHEP04(2023)135 [arXiv:2303.07388 [hep-th]].
- S. Duary, “Flat limit of massless scalar scattering in AdS2subscriptAdS2\mathrm{AdS}_{2}roman_AdS start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” [arXiv:2305.20037 [hep-th]].
- A. Bagchi, P. Dhivakar and S. Dutta, “Holography in Flat Spacetimes: the case for Carroll,” [arXiv:2311.11246 [hep-th]].