Partial-transpose-guided entanglement classes and minimum noise filtering in many-body Gaussian quantum systems (2402.13881v2)
Abstract: The reduction and distortion of quantum correlations in the presence of classical noise leads to varied levels of inefficiency in the availability of entanglement as a resource for quantum information processing protocols. While generically minimizing required entanglement for mixed quantum states remains challenging, a class of many-body Gaussian quantum states ($\mathcal{N}$IC) is here identified that exhibits two-mode bipartite entanglement structure, resembling that of pure states, for which the logarithmic negativity entanglement measure remains invariant upon inclusion of the classical correlations and optimal entanglement resources can be clearly quantified. This subclass is found to be embedded within a broader class of many-body Gaussian states ($\mathcal{N}$-SOL) that retain two-mode entanglement structure for detection processes. These two entanglement classes are relevant in theoretical and experimental applications from the scalar field vacuum to the local axial motional modes of trapped ion chains. Utilizing the subspace that heralds inseparability in response to partial transposition, a minimum noise filtering process is designed to be necessary, sufficient, and computable for determining membership in these classes of entanglement structure. Application of this process to spacelike regions of the free scalar field vacuum is found to improve resource upper bounds, providing new understanding of the entanglement required for the quantum simulation of quantum fields as observed by arrays of local detectors.
- A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777 (1935).
- J. S. Bell, On the einstein podolsky rosen paradox, Physics Physique Fizika 1, 195 (1964).
- S. J. Freedman and J. F. Clauser, Experimental test of local hidden-variable theories, Phys. Rev. Lett. 28, 938 (1972).
- A. Aspect, P. Grangier, and G. Roger, Experimental tests of realistic local theories via bell’s theorem, Phys. Rev. Lett. 47, 460 (1981).
- A. Aspect, P. Grangier, and G. Roger, Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: A new violation of bell’s inequalities, Phys. Rev. Lett. 49, 91 (1982).
- H. Reeh and S. Schlieder, Bemerkungen zur unitäräquivalenz von lorentzinvarianten feldern, Il Nuovo Cimento (1955-1965) 22, 1051 (1961).
- S. J. Summers and R. Werner, Maximal violation of bell’s inequalities is generic in quantum field theory, Communications in Mathematical Physics 110, 247 (1987).
- E. Witten, Aps medal for exceptional achievement in research: Invited article on entanglement properties of quantum field theory, Rev. Mod. Phys. 90, 045003 (2018), arXiv:1803.04993 [quant-ph] .
- A. Valentini, Non-local correlations in quantum electrodynamics, Physics Letters A 153, 321 (1991).
- B. Reznik, Entanglement from the vacuum, Foundations of Physics 33, 167 (2003), arXiv:quant-ph/0212044 .
- B. Reznik, A. Retzker, and J. Silman, Violating bell’s inequalities in vacuum, Phys. Rev. A 71, 042104 (2005), arXiv:qquant-ph/0310058 .
- C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881 (1992).
- C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560, 7 (2014), arXiv:2003.06557 [quant-ph] .
- R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, 467 (1982).
- M. Aidelsburger et al., Cold atoms meet lattice gauge theory, Philosophical Transactions of the Royal Society A 380, 20210064 (2022), arXiv:2106.03063 [cond-mat.quant-gas] .
- N. Klco, A. Roggero, and M. J. Savage, Standard model physics and the digital quantum revolution: thoughts about the interface, Rept. Prog. Phys. 85, 064301 (2022), arXiv:2107.04769 [quant-ph] .
- C. W. Bauer et al., Quantum Simulation for High-Energy Physics, PRX Quantum 4, 027001 (2023a), arXiv:2204.03381 [quant-ph] .
- M. Srednicki, Entropy and area, Phys. Rev. Lett. 71, 666 (1993), arXiv:hep-th/9303048 .
- D. Jonathan and M. B. Plenio, Minimal conditions for local pure-state entanglement manipulation, Phys. Rev. Lett. 83, 1455 (1999), arXiv:quant-ph/9903054 .
- G. Vidal, D. Jonathan, and M. A. Nielsen, Approximate transformations and robust manipulation of bipartite pure-state entanglement, Phys. Rev. A 62, 012304 (2000), arXiv:quant-ph/9910099 .
- G. Vidal, On the characterization of entanglement, J. Mod. Opt. 47, 355 (2000), arXiv:quant-ph/9807077 .
- M. A. Nielsen, Conditions for a class of entanglement transformations, Phys. Rev. Lett. 83, 436 (1999), arXiv:quant-ph/9811053 .
- G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002), arXiv:quant-ph/0102117 .
- M. B. Plenio, Logarithmic negativity: A full entanglement monotone that is not convex, Phys. Rev. Lett. 95, 090503 (2005), arXiv:quant-ph/9605038 .
- A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413 (1996), arXiv:quant-ph/9604005 .
- M. Horodecki, P. Horodecki, and R. Horodecki, On the necessary and sufficient conditions for separability of mixed quantum states, Phys. Lett. A 223, 1 (1996), arXiv:quant-ph/9605038 .
- R. Simon, Peres-Horodecki Separability Criterion for Continuous Variable Systems, Phys. Rev. Lett. 84, 2726 (2000), arXiv:quant-ph/9909044 .
- M. Christandl and A. Winter, “squashed entanglement”: An additive entanglement measure, Journal of Mathematical Physics 45, 829–840 (2004), arXiv:quant-ph/0308088 .
- D. Yang, M. Horodecki, and Z. D. Wang, An additive and operational entanglement measure: Conditional entanglement of mutual information, Phys. Rev. Lett. 101, 140501 (2008), arXiv:0804.3683 [quant-ph] .
- Y. Huang, Computing quantum discord is np-complete, New Journal of Physics 16, 033027 (2014), arXiv:1305.5941 [quant-ph] .
- B. C. Hiesmayr, Free versus bound entanglement, a np-hard problem tackled by machine learning, Scientific Reports 11, 19739 (2021).
- M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?, Phys. Rev. Lett. 80, 5239 (1998), arXiv:quant-ph/9801069 .
- R. F. Werner and M. M. Wolf, Bound entangled gaussian states, Phys. Rev. Lett. 86, 3658 (2001), arXiv:quant-ph/0009118 .
- H.-P. Breuer, Optimal entanglement criterion for mixed quantum states, Phys. Rev. Lett. 97, 080501 (2006), arXiv:quant-ph/0605036 .
- A. Botero and B. Reznik, Modewise entanglement of gaussian states, Phys. Rev. A 67, 052311 (2003), arXiv:quant-ph/0209026 .
- P. Marian and T. A. Marian, Entanglement of Formation for an Arbitrary Two-Mode Gaussian State, Phys. Rev. Lett. 101, 220403 (2008), arXiv:0809.0321 [quant-ph] .
- S. Tserkis and T. C. Ralph, Quantifying entanglement in two-mode gaussian states, Phys. Rev. A 96, 062338 (2017), arXiv:1705.03612 [quant-ph] .
- S. Tserkis, S. Onoe, and T. C. Ralph, Quantifying entanglement of formation for two-mode gaussian states: Analytical expressions for upper and lower bounds and numerical estimation of its exact value, Phys. Rev. A 99, 052337 (2019), arXiv:1903.09961 [quant-ph] .
- S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005), arXiv:quant-ph/0410100 .
- G. Adesso, A. Serafini, and F. Illuminati, Extremal entanglement and mixedness in continuous variable systems, Phys. Rev. A 70, 022318 (2004), arXiv:quant-ph/0402124 .
- G. Adesso and F. Illuminati, Gaussian measures of entanglement versus negativities: Ordering of two-mode gaussian states, Phys. Rev. A 72, 032334 (2005), arXiv:quant-ph/0506124 .
- A. Serafini, Quantum continuous variables: a primer of theoretical methods (CRC press, 2017).
- N. J. Cerf, G. Leuchs, and E. S. Polzik, Quantum Information with Continuous Variables of Atoms and Light (Published by Imperial College Press and Distributed by World Scientific Publishing Co., 2007).
- B. Julsgaard, A. Kozhekin, and E. S. Polzik, Experimental long-lived entanglement of two macroscopic objects, Nature 413, 400 (2000), arXiv:quant-ph/0106057 .
- M. Chen, N. C. Menicucci, and O. Pfister, Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb, Phys. Rev. Lett. 112, 120505 (2014), arXiv:1311.2957 [quant-ph] .
- M. M. Wolf, G. Giedke, and J. I. Cirac, Extremality of gaussian quantum states, Phys. Rev. Lett. 96, 080502 (2006), arXiv:quant-ph/0509154 .
- A. Botero and B. Reznik, Modewise entanglement of Gaussian states, Phys. Rev. A 67, 052311 (2003), arXiv:quant-ph/0209026 .
- M. M. Wolf, Not-so-normal mode decomposition, Phys. Rev. Lett. 100, 070505 (2008), arXiv:0707.0604 [quant-ph] .
- N. Klco, D. H. Beck, and M. J. Savage, Entanglement structures in quantum field theories: Negativity cores and bound entanglement in the vacuum, Phys. Rev. A 107, 012415 (2023), arXiv:2110.10736 [quant-ph] .
- N. Klco and M. J. Savage, Geometric quantum information structure in quantum fields and their lattice simulation, Phys. Rev. D 103, 065007 (2021a), arXiv:2008.03647 [quant-ph] .
- N. Klco and M. J. Savage, Entanglement Spheres and a UV-IR Connection in Effective Field Theories, Phys. Rev. Lett. 127, 211602 (2021b), arXiv:2103.14999 [hep-th] .
- A. Retzker, J. I. Cirac, and B. Reznik, Detecting Vacuum Entanglement in a Linear Ion Trap, Phys. Rev. Lett. 94, 050504 (2005), arXiv:quant-ph/0408059 [quant-ph] .
- N. Klco and D. H. Beck, A Natural Field-like Entanglement Resource in Trapped-Ion Chains (2023a), arXiv:2311.08842 [quant-ph] .
- J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, American Journal of Mathematics 58, 141 (1936).
- N. Klco and D. H. Beck, Entanglement structures in quantum field theories. II. Distortions of vacuum correlations through the lens of local observers, Phys. Rev. A 108, 012429 (2023b), arXiv:2304.04143 [quant-ph] .
- S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
- R. Horn and C. Johnson, Matrix Analysis (Cambridge university press, 2012).
- G. Adesso, D. Girolami, and A. Serafini, Measuring gaussian quantum information and correlations using the rényi entropy of order 2, Phys. Rev. Lett. 109, 190502 (2012), arXiv:1203.5116 [quant-ph] .
- A. Botero and B. Reznik, Spatial structures and localization of vacuum entanglement in the linear harmonic chain, Phys. Rev. A 70, 052329 (2004), arXiv:quant-ph/0403233 .
- P. Calabrese, J. Cardy, and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, Journal of Statistical Mechanics: Theory and Experiment 2009, P11001 (2009), arXiv:0905.2069 [hep-th] .
- P. Calabrese, J. Cardy, and E. Tonni, Entanglement negativity in quantum field theory, Phys. Rev. Lett. 109, 130502 (2012), arXiv:1206.3092 [cond-mat.stat-mech] .
- P. Calabrese, J. Cardy, and E. Tonni, Entanglement negativity in extended systems: a field theoretical approach, Journal of Statistical Mechanics: Theory and Experiment 2013, P02008 (2013), arXiv:1210.5359 [cond-mat.stat-mech] .
- M. R. Mohammadi Mozaffar and A. Mollabashi, Entanglement in lifshitz-type quantum field theories, Journal of High Energy Physics 2017, 1 (2017), arXiv:1705.00483 [hep-th] .
- N. Klco and M. J. Savage, Systematically Localizable Operators for Quantum Simulations of Quantum Field Theories, Phys. Rev. A 102, 012619 (2020a), arXiv:1912.03577 [quant-ph] .
- N. Klco and M. J. Savage, Fixed-point quantum circuits for quantum field theories, Phys. Rev. A 102, 052422 (2020b), arXiv:2002.02018 [quant-ph] .
- A. Ciavarella, N. Klco, and M. J. Savage, Some Conceptual Aspects of Operator Design for Quantum Simulations of Non-Abelian Lattice Gauge Theories (2022) arXiv:2203.11988 [quant-ph] .
- J. Berges, S. Floerchinger, and R. Venugopalan, Entanglement and thermalization, Nucl. Phys. A 982, 819 (2019), arXiv:1812.08120 [hep-th] .
- D. E. Kharzeev and E. M. Levin, Deep inelastic scattering as a probe of entanglement, Phys. Rev. D 95, 114008 (2017), arXiv:1702.03489 [hep-ph] .
- D. E. Kharzeev and E. Levin, Deep inelastic scattering as a probe of entanglement: Confronting experimental data, Phys. Rev. D 104, L031503 (2021), arXiv:2102.09773 [hep-ph] .
- O. K. Baker and D. E. Kharzeev, Thermal radiation and entanglement in proton-proton collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. D 98, 054007 (2018), arXiv:1712.04558 [hep-ph] .
- S. R. Beane and R. C. Farrell, Geometry and entanglement in the scattering matrix, Annals Phys. 433, 168581 (2021), arXiv:2011.01278 [hep-th] .
- S. R. Beane, R. C. Farrell, and M. Varma, Entanglement minimization in hadronic scattering with pions, Int. J. Mod. Phys. A 36, 2150205 (2021), arXiv:2108.00646 [hep-ph] .
- C. Robin, M. J. Savage, and N. Pillet, Entanglement Rearrangement in Self-Consistent Nuclear Structure Calculations, Phys. Rev. C 103, 034325 (2021), arXiv:2007.09157 [nucl-th] .
- I. Low and T. Mehen, Symmetry from entanglement suppression, Phys. Rev. D 104, 074014 (2021), arXiv:2104.10835 [hep-th] .
- Q. Liu, I. Low, and T. Mehen, Minimal entanglement and emergent symmetries in low-energy QCD, Phys. Rev. C 107, 025204 (2023), arXiv:2210.12085 [quant-ph] .
- A. Roggero, Entanglement and many-body effects in collective neutrino oscillations, Phys. Rev. D 104, 103016 (2021), arXiv:2102.10188 [hep-ph] .
- N. Mueller, T. V. Zache, and R. Ott, Thermalization of Gauge Theories from their Entanglement Spectrum, Phys. Rev. Lett. 129, 011601 (2022), arXiv:2107.11416 [quant-ph] .