Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Efficiency of Iso-Surface Extraction on Implicit Neural Representations Using Uncertainty Propagation (2402.13861v1)

Published 21 Feb 2024 in cs.GR and cs.LG

Abstract: Implicit Neural representations (INRs) are widely used for scientific data reduction and visualization by modeling the function that maps a spatial location to a data value. Without any prior knowledge about the spatial distribution of values, we are forced to sample densely from INRs to perform visualization tasks like iso-surface extraction which can be very computationally expensive. Recently, range analysis has shown promising results in improving the efficiency of geometric queries, such as ray casting and hierarchical mesh extraction, on INRs for 3D geometries by using arithmetic rules to bound the output range of the network within a spatial region. However, the analysis bounds are often too conservative for complex scientific data. In this paper, we present an improved technique for range analysis by revisiting the arithmetic rules and analyzing the probability distribution of the network output within a spatial region. We model this distribution efficiently as a Gaussian distribution by applying the central limit theorem. Excluding low probability values, we are able to tighten the output bounds, resulting in a more accurate estimation of the value range, and hence more accurate identification of iso-surface cells and more efficient iso-surface extraction on INRs. Our approach demonstrates superior performance in terms of the iso-surface extraction time on four datasets compared to the original range analysis method and can also be generalized to other geometric query tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Y. Lu, K. Jiang, J. A. Levine, and M. Berger, “Compressive neural representations of volumetric scalar fields,” Computer Graphics Forum, vol. 40, no. 3, pp. 135–146, 2021.
  2. S. Weiss, P. Hermüller, and R. Westermann, “Fast neural representations for direct volume rendering,” Computer Graphics Forum, vol. 41, no. 6, pp. 196–211, 2022.
  3. J. Han and C. Wang, “Coordnet: Data generation and visualization generation for time-varying volumes via a coordinate-based neural network,” IEEE Transactions on Visualization and Computer Graphics, 2022.
  4. W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface construction algorithm,” ACM siggraph computer graphics, vol. 21, no. 4, pp. 163–169, 1987.
  5. Q. Wu, M. J. Doyle, D. Bauer, and K.-L. Ma, “Instant neural representation for interactive volume rendering,” arXiv preprint arXiv:2207.11620, 2022.
  6. J. Wilhelms and A. Van Gelder, “Octrees for faster isosurface generation,” ACM Transactions on Graphics (TOG), vol. 11, no. 3, pp. 201–227, 1992.
  7. P. Sutton and C. D. Hansen, “Isosurface extraction in time-varying fields using a temporal branch-on-need tree (t-bon),” in Proceedings Visualization’99 (Cat. No. 99CB37067).   IEEE, 1999, pp. 147–520.
  8. N. Sharp and A. Jacobson, “Spelunking the deep: Guaranteed queries on general neural implicit surfaces via range analysis,” ACM Trans. Graph., vol. 41, no. 4, jul 2022. [Online]. Available: https://doi.org/10.1145/3528223.3530155
  9. Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan, F. Tombari, J. Tompkin, V. Sitzmann, and S. Sridhar, “Neural fields in visual computing and beyond,” Computer Graphics Forum, vol. 41, no. 2, pp. 641–676, 2022.
  10. S. Pan, S. Brunton, and N. Kutz, “Neural implicit flow: A mesh-agnostic representation paradigm for spatio-temporal fields,” in APS Division of Fluid Dynamics Meeting Abstracts, 2021, pp. M31–006.
  11. G. Zang, R. Idoughi, R. Li, P. Wonka, and W. Heidrich, “Intratomo: self-supervised learning-based tomography via sinogram synthesis and prediction,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 1960–1970.
  12. L. Shen, J. Pauly, and L. Xing, “Nerp: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  13. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational physics, vol. 378, pp. 686–707, 2019.
  14. J. Zehnder, Y. Li, S. Coros, and B. Thomaszewski, “Ntopo: Mesh-free topology optimization using implicit neural representations,” Advances in Neural Information Processing Systems, vol. 34, pp. 10 368–10 381, 2021.
  15. D. Izzo and P. Gómez, “Geodesy of irregular small bodies via neural density fields,” Communications Engineering, vol. 1, no. 1, p. 48, 2022.
  16. J. D. Smith, K. Azizzadenesheli, and Z. E. Ross, “Eikonet: Solving the eikonal equation with deep neural networks,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 12, pp. 10 685–10 696, 2020.
  17. S. Pfrommer, M. Halm, and M. Posa, “Contactnets: Learning discontinuous contact dynamics with smooth, implicit representations,” in Conference on Robot Learning.   PMLR, 2021, pp. 2279–2291.
  18. T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,” Computers & Graphics, vol. 5, no. 30, pp. 854–879, 2006.
  19. Y. Livnat, H.-W. Shen, and C. R. Johnson, “A near optimal isosurface extraction algorithm using the span space,” IEEE transactions on Visualization and Computer Graphics, vol. 2, no. 1, pp. 73–84, 1996.
  20. H.-W. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson, “Isosurfacing in span space with utmost efficiency (issue),” in Proceedings of Seventh Annual IEEE Visualization’96.   IEEE, 1996, pp. 287–294.
  21. P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, “Optimal isosurface extraction from irregular volume data,” in Proceedings of 1996 Symposium on Volume Visualization.   IEEE, 1996, pp. 31–38.
  22. T. Itoh and K. Koyamada, “Automatic isosurface propagation using an extrema graph and sorted boundary cell lists,” IEEE Transactions on Visualization and Computer Graphics, vol. 1, no. 4, pp. 319–327, 1995.
  23. M. Mudde, “Chebyshev approximation,” Ph.D. dissertation, Faculty of Science and Engineering, 2017.
  24. J. W. Lindeberg, “Eine neue herleitung des exponentialgesetzes in der wahrscheinlichkeitsrechnung,” Mathematische Zeitschrift, vol. 15, no. 1, pp. 211–225, 1922.
  25. O. Bouissou, E. Goubault, J. Goubault-Larrecq, and S. Putot, “A generalization of p-boxes to affine arithmetic,” Computing, vol. 94, pp. 189–201, 2012.
  26. O. Bouissou, E. Goubault, S. Putot, A. Chakarov, and S. Sankaranarayanan, “Uncertainty propagation using probabilistic affine forms and concentration of measure inequalities,” in Tools and Algorithms for the Construction and Analysis of Systems: 22nd International Conference, TACAS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings 22.   Springer, 2016, pp. 225–243.
  27. J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.
  28. J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux, “The topology toolkit,” IEEE transactions on visualization and computer graphics, vol. 24, no. 1, pp. 832–842, 2017.
  29. K. Kanov, R. Burns, C. Lalescu, and G. Eyink, “The johns hopkins turbulence databases: an open simulation laboratory for turbulence research,” Computing in Science & Engineering, vol. 17, no. 5, pp. 10–17, 2015.
  30. V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Implicit neural representations with periodic activation functions,” Advances in Neural Information Processing Systems, vol. 33, pp. 7462–7473, 2020.
  31. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable transformations of Python+NumPy programs,” http://github.com/google/jax, 2018.
  32. B. Liu, G. J. Clapworthy, F. Dong, and E. Wu, “Parallel marching blocks: A practical isosurfacing algorithm for large data on many-core architectures,” in Computer Graphics Forum, vol. 35, no. 3.   Wiley Online Library, 2016, pp. 211–220.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets