Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Balancing Spectral, Temporal and Spatial Information for EEG-based Alzheimer's Disease Classification (2402.13523v2)

Published 21 Feb 2024 in eess.SP, cs.LG, and q-bio.NC

Abstract: The prospect of future treatment warrants the development of cost-effective screening for Alzheimer's disease (AD). A promising candidate in this regard is electroencephalography (EEG), as it is one of the most economic imaging modalities. Recent efforts in EEG analysis have shifted towards leveraging spatial information, employing novel frameworks such as graph signal processing or graph neural networks. Here, we investigate the importance of spatial information relative to spectral or temporal information by varying the proportion of each dimension for AD classification. To do so, we systematically test various dimension resolution configurations on two routine EEG datasets. Our findings show that spatial information is more important than temporal information and equally valuable as spectral information. On the larger second dataset, substituting spectral with spatial information even led to an increase of 1.1% in accuracy, which emphasises the importance of spatial information for EEG-based AD classification. We argue that our resolution-based feature extraction has the potential to improve AD classification specifically, and multivariate signal classification generally.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. B. Dubois, N. Villain, G. B. Frisoni, G. D. Rabinovici, M. Sabbagh, S. Cappa et al., “Clinical diagnosis of alzheimer’s disease: recommendations of the international working group,” The Lancet Neurology, vol. 20, no. 6, pp. 484–496, 2021.
  2. J. Rasmussen and H. Langerman, “Alzheimer’s disease–why we need early diagnosis,” Degenerative neurological and neuromuscular disease, pp. 123–130, 2019.
  3. G. Livingston, A. Sommerlad, V. Orgeta, C. Jack Jr, D. Bennett, K. Blennow et al., “Current and future treatments in alzheimer’s disease,” in Seminars in neurology, vol. 39, no. 02.   Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA., 2019, pp. 227–240.
  4. P. M. Rossini, R. Di Iorio, F. Vecchio, M. Anfossi, C. Babiloni, M. Bozzali et al., “Early diagnosis of alzheimer’s disease: the role of biomarkers including advanced eeg signal analysis. report from the ifcn-sponsored panel of experts,” Clinical Neurophysiology, vol. 131, no. 6, pp. 1287–1310, 2020.
  5. S. Goerttler, F. He, and M. Wu, “Understanding concepts in graph signal processing for neurophysiological signal analysis,” arXiv preprint arXiv:2312.03371, 2023.
  6. D. Klepl, M. Wu, and F. He, “Graph neural network-based eeg classification: A survey,” arXiv preprint arXiv:2310.02152, 2023.
  7. U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17, pp. 395–416, 2007.
  8. D. J. Blackburn, Y. Zhao, M. De Marco, S. M. Bell, F. He, H.-L. Wei et al., “A pilot study investigating a novel non-linear measure of eyes open versus eyes closed eeg synchronization in people with alzheimer’s disease and healthy controls,” Brain sciences, vol. 8, no. 7, p. 134, 2018.
  9. A. Miltiadous, K. D. Tzimourta, T. Afrantou, P. Ioannidis, N. Grigoriadis, D. G. Tsalikakis et al., “A dataset of scalp eeg recordings of alzheimer’s disease, frontotemporal dementia and healthy subjects from routine eeg,” Data, vol. 8, no. 6, p. 95, 2023.
  10. P. Welch, “The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Transactions on audio and electroacoustics, vol. 15, no. 2, pp. 70–73, 1967.
Citations (1)

Summary

We haven't generated a summary for this paper yet.