Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dissipative spatiotemporal soliton in a driven waveguide laser (2402.13348v2)

Published 20 Feb 2024 in physics.optics and nlin.PS

Abstract: A distributed Kerr-lens mode locking regime can be realized in a waveguide laser by spatial profiling of the pump beam, thus creating a spatio-temporal soliton. Additional slow temporal modulation of the pump source stabilizes the spatio-temporal solution in a broad range of parameters, which are defined by the dynamic gain saturation. We choose a Cr:ZnS waveguide laser as a practical example, but such a regime is feasible in various waveguide and fiber oscillators. A far-reaching analogy with Bose-Einstein condensates allows using this approach to stabilization of the weakly dissipative BECs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. Z.-H. Luo, W. Pang, B. Liu, Y.-Y. Li, and B. A. Malomed, “A new form of liquid matter: Quantum droplets,” \JournalTitleFrontiers of Physics 16, 1–21 (2021).
  2. M. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, “One dimensional bosons: From condensed matter systems to ultracold gases,” \JournalTitleReviews of Modern Physics 83, 1405 (2011).
  3. R. Carretero-González, D. Frantzeskakis, and P. Kevrekidis, “Nonlinear waves in bose–einstein condensates: physical relevance and mathematical techniques,” \JournalTitleNonlinearity 21, R139 (2008).
  4. M. Boninsegni and N. V. Prokof’ev, “Colloquium: Supersolids: What and where are they?” \JournalTitleReviews of Modern Physics 84, 759 (2012).
  5. P. Robinson, “Nonlinear wave collapse and strong turbulence,” \JournalTitleReviews of modern physics 69, 507 (1997).
  6. A. Dyachenko, V. Zakharov, A. Pushkarev, V. Shvets, and V. Yankov, “Soliton turbulence in nonintegrable wave systems,” \JournalTitleZh. Eksp. Teor. Fiz 96, 19 (1989).
  7. E. Kuznetsov, A. Rubenchik, and V. E. Zakharov, “Soliton stability in plasmas and hydrodynamics,” \JournalTitlePhysics Reports 142, 103–165 (1986).
  8. F. Krausz and M. Ivanov, “Attosecond physics,” \JournalTitleReviews of modern physics 81, 163 (2009).
  9. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” \JournalTitleReviews of modern physics 78, 309 (2006).
  10. R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta et al., “Dielectric laser accelerators,” \JournalTitleReviews of Modern Physics 86, 1337 (2014).
  11. T. Südmeyer, S. Marchese, S. Hashimoto, C. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” \JournalTitleNature photonics 2, 599–604 (2008).
  12. A. Gallerati, G. Modanese, and G. A. Ummarino, “Interaction between macroscopic quantum systems and gravity,” \JournalTitleFrontiers in Physics p. 559 (2022).
  13. D. Faccio, “Laser pulse analogues for gravity and analogue hawking radiation,” \JournalTitleContemporary Physics 53, 97–112 (2012).
  14. V. Kalashnikov and S. Wabnitz, “A “metaphorical” nonlinear multimode fiber laser approach to weakly dissipative bose-einstein condensates a,” \JournalTitleEurophysics Letters 133, 34002 (2021).
  15. D. Faccio, S. Cacciatori, V. Gorini, V. Sala, A. Averchi, A. Lotti, M. Kolesik, and J. Moloney, “Analogue gravity and ultrashort laser pulse filamentation,” \JournalTitleEPL (Europhysics Letters) 89, 34004 (2010).
  16. P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano, “Ultrastrong coupling regimes of light-matter interaction,” \JournalTitleReviews of Modern Physics 91, 025005 (2019).
  17. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” \JournalTitleNature photonics 2, 219–225 (2008).
  18. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” \JournalTitleLaser & Photonics Reviews 7, 385–407 (2013).
  19. M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium,” \JournalTitleReviews of modern physics 65, 851 (1993).
  20. W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” \JournalTitleOptics express 26, 9432–9463 (2018).
  21. H.-G. Purwins, H. Bödeker, and S. Amiranashvili, “Dissipative solitons,” \JournalTitleAdvances in Physics 59, 485–701 (2010).
  22. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” \JournalTitleReviews of Modern Physics 72, 545 (2000).
  23. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” \JournalTitleNature photonics 6, 84–92 (2012).
  24. J. Brons, “High-power femtosecond laser-oscillators for application in high-field physics,” Ph.D. thesis, Ludwig Maximilians Universität München (2017).
  25. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and M. A. Noginov, “Efficient continuous-wave tem00 and femtosecond kerr-lens mode-locked cr:lisrgaf laser,” \JournalTitleOpt. Lett. 21, 204–206 (1996).
  26. J. Zhang, M. Poetzlberger, Q. Wang, J. Brons, M. Seidel, D. Bauer, D. Sutter, V. Pervak, A. Apolonski, K. F. Mak et al., “Distributed kerr lens mode-locked yb: Yag thin-disk oscillator,” \JournalTitleUltrafast Science 2022 (2022).
  27. M. Demesh, V. L. Kalashnikov, E. Sorokin, N. Gusakova, A. Rudenkov, and I. T. Sorokina, “At the threshold of distributed kerr-lens mode-locking in a cr:zns waveguide laser,” \JournalTitleJ. Opt. Soc. Am. B 40, 1717–1725 (2023).
  28. T. Brabec, C. Spielmann, P. Curley, and F. Krausz, “Kerr lens mode locking,” \JournalTitleOptics letters 17, 1292–1294 (1992).
  29. C. R. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, “Frontiers in passively mode-locked high-power thin disk laser oscillators,” \JournalTitleOptics Express 20, 7054–7065 (2012).
  30. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, A. Apolonski, V. L. Kalashnikov, and F. Krausz, “High-power kerr-lens mode-locked yb: Yag thin-disk oscillator in the positive dispersion regime,” \JournalTitleOptics letters 37, 3543–3545 (2012).
  31. W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” \JournalTitlePhysical Review A 78, 023830 (2008).
  32. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” \JournalTitleLaser & Photonics Reviews 2, 58–73 (2008).
  33. P. Mondal, V. Mishra, and S. K. Varshney, “Nonlinear interactions in multimode optical fibers,” \JournalTitleOptical Fiber Technology 54, 102041 (2020).
  34. M. Piccardo, V. Ginis, A. Forbes, S. Mahler, A. A. Friesem, N. Davidson, H. Ren, A. H. Dorrah, F. Capasso, F. T. Dullo et al., “Roadmap on multimode light shaping,” \JournalTitleJournal of Optics 24, 013001 (2021).
  35. M. Matuszewski, E. Infeld, B. A. Malomed, and M. Trippenbach, “Stabilization of three-dimensional light bullets by a transverse lattice in a kerr medium with dispersion management,” \JournalTitleOptics communications 259, 49–54 (2006).
  36. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” \JournalTitleReviews of Modern Physics 83, 247 (2011).
  37. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” \JournalTitleScience 358, 94–97 (2017).
  38. L. G. Wright, P. Sidorenko, H. Pourbeyram, Z. M. Ziegler, A. Isichenko, B. A. Malomed, C. R. Menyuk, D. N. Christodoulides, and F. W. Wise, “Mechanisms of spatiotemporal mode-locking,” \JournalTitleNature Physics 16, 565–570 (2020).
  39. A. Siegman, “Propagating modes in gain-guided optical fibers,” \JournalTitleJOSA A 20, 1617–1628 (2003).
  40. Y. Sun, P. Parra-Rivas, C. Milián, Y. V. Kartashov, M. Ferraro, F. Mangini, R. Jauberteau, F. R. Talenti, and S. Wabnitz, “Robust three-dimensional high-order solitons and breathers in driven dissipative systems: a kerr cavity realization,” \JournalTitlePhysical Review Letters 131, 137201 (2023).
  41. Z. Li, Y. Xu, S. Shamailov, X. Wen, W. Wang, X. Wei, Z. Yang, S. Coen, S. G. Murdoch, and M. Erkintalo, “Ultrashort dissipative raman solitons in kerr resonators driven with phase-coherent optical pulses,” \JournalTitlearXiv preprint arXiv:2212.08223 (2022).
  42. E. Kengne, W.-M. Liu, and B. A. Malomed, “Spatiotemporal engineering of matter-wave solitons in bose–einstein condensates,” \JournalTitlePhysics Reports 899, 1–62 (2021).
  43. N. Smith, K. Blow, W. Firth, and K. Smith, “Soliton dynamics in the presence of phase modulators,” \JournalTitleOptics communications 102, 324–328 (1993).
  44. S. Wabnitz, “Suppression of soliton interactions by phase modulation,” \JournalTitleElectronics Letters 19, 1711–1713 (1993).
  45. W. Chang, N. Akhmediev, S. Wabnitz, and M. Taki, “Influence of external phase and gain-loss modulation on bound solitons in laser systems,” \JournalTitleJOSA B 26, 2204–2210 (2009).
  46. F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman, “Temporal cavity solitons in one-dimensional kerr media as bits in an all-optical buffer,” \JournalTitleNature Photonics 4, 471–476 (2010).
  47. N. Englebert, N. Goldman, M. Erkintalo, N. Mostaan, S.-P. Gorza, F. Leo, and J. Fatome, “Bloch oscillations of driven dissipative solitons in a synthetic dimension,” \JournalTitlearXiv preprint arXiv:2112.10756 (2021).
  48. V. L. Kalashnikov and S. Wabnitz, “Stabilization of spatiotemporal dissipative solitons in multimode fiber lasers by external phase modulation,” \JournalTitleLaser Physics Letters 19, 105101 (2022).
  49. Y. Zhu, B. Semisalov, and S. Krstulovic, G.and Nazarenko, “Testing wave turbulence theory for the gross-pitaevskii system,” \JournalTitlePhysical Review E 106, 014205 (2022).
  50. V. L. Kalashnikov and S. Wabnitz, “Distributed kerr-lens mode locking based on spatiotemporal dissipative solitons in multimode fiber lasers,” \JournalTitlePhysical Review A 102, 023508 (2020).
  51. V. Skarka, N. Aleksić, H. Leblond, B. Malomed, and D. Mihalache, “Varieties of stable vortical solitons in ginzburg-landau media with radially inhomogeneous losses,” \JournalTitlePhysical review letters 105, 213901 (2010).
  52. V. E. Lobanov, O. V. Borovkova, Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Topological light bullets supported by spatiotemporal gain,” \JournalTitlePhysical Review A 85, 023804 (2012).
  53. F. Castelli, M. Brambilla, A. Gatti, F. Prati, and L. A. Lugiato, “The lle, pattern formation and a novel coherent source,” \JournalTitleThe European Physical Journal D 71, 1–16 (2017).
  54. L. Lugiato, F. Prati, M. Gorodetsky, and T. Kippenberg, “From the lugiato–lefever equation to microresonator-based soliton kerr frequency combs,” \JournalTitlePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, 20180113 (2018).
  55. S. Coen and M. Erkintalo, “Temporal cavity solitons in kerr media,” \JournalTitleNonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers pp. 11–40 (2016).
  56. L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” \JournalTitlePhysical review letters 58, 2209 (1987).
  57. M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation instability in a nonlinear dispersive ring cavity,” \JournalTitleOptics communications 91, 401–407 (1992).
  58. P. Aschieri, J. Garnier, C. Michel, V. Doya, and A. Picozzi, “Condensation and thermalization of classsical optical waves in a waveguide,” \JournalTitlePhysical Review A 83, 033838 (2011).
  59. S. Raghavan and G. P. Agrawal, “Spatiotemporal solitons in inhomogeneous nonlinear media,” \JournalTitleOptics Communications 180, 377–382 (2000).
  60. J. Herrmann and B. Wilhelmi, “Lasers for ultrashort light pulses,” in Lasers for Ultrashort Light Pulses, (North-Holland, Amsterdam, 1987).
  61. S. Choi, S. Morgan, and K. Burnett, “Phenomenological damping in trapped atomic bose-einstein condensates,” \JournalTitlePhysical Review A 57, 4057 (1998).
  62. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” \JournalTitleJournal of applied physics 34, 2346–2349 (1963).
  63. E. Sorokin, A. A. Bushunov, N. Tolstik, A. A. Teslenko, E. Einmo, M. K. Tarabrin, V. A. Lazarev, and I. T. Sorokina, “All-laser-microprocessed waveguide cr: Zns laser,” \JournalTitleOptical Materials Express 12, 414–420 (2022).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com