2000 character limit reached
On the metric property of quantum Wasserstein divergences (2402.13150v4)
Published 20 Feb 2024 in math-ph, math.FA, math.MP, and quant-ph
Abstract: Quantum Wasserstein divergences are modified versions of quantum Wasserstein distances defined by channels, and they are conjectured to be genuine metrics on quantum state spaces by De Palma and Trevisan. We prove triangle inequality for quantum Wasserstein divergences for every quantum system described by a separable Hilbert space and any quadratic cost operator under the assumption that a particular state involved is pure, and all the states have finite energy. We also provide strong numerical evidence suggesting that the triangle inequality holds in general, for an arbitrary choice of states.
- Optimal transportation and applications, volume 1813 of Lecture Notes in Mathematics. Springer-Verlag, Berlin; Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, 2003. Lectures from the C.I.M.E. Summer School held in Martina Franca, September 2–8, 2001. doi:10.1007/b12016.
- J. Backhoff-Veraguas and G. Pammer. Stability of martingale optimal transport and weak optimal transport. Ann. Appl. Probab., 32(1):721–752, 2022.
- On a problem of optimal transport under marginal martingale constraints. Ann. Probab., 44(1):42–106, 2016. doi:10.1214/14-AOP966.
- A free probability analogue of the Wasserstein metric on the trace-state space. Geom. Funct. Anal., 11(6):1125–1138, 2001. doi:10.1007/s00039-001-8226-4.
- Monotonicity of the quantum 2-Wasserstein distance, 2022. arXiv:2204.07405.
- J. Briët and P. Harremoës. Properties of classical and quantum jensen-shannon divergence. Phys. Rev. A, 79:052311, 2009.
- Numerical tests for the triangle inequality. URL: https://users.renyi.hu/~dviroszt/numerics-for-triangle-inequality/.
- Quantum optimal transport is cheaper. J. Stat. Phys., 181(1):149–162, 2020. doi:10.1007/s10955-020-02571-7.
- Towards optimal transport for quantum densities, 2021. arXiv:2101.03256.
- Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance. J. Funct. Anal., 273(5):1810–1869, 2017. doi:10.1016/j.jfa.2017.05.003.
- Correction to: Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems. J. Stat. Phys., 181(6):2432–2433, 2020. doi:10.1007/s10955-020-02671-4.
- Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems. J. Stat. Phys., 178(2):319–378, 2020. doi:10.1007/s10955-019-02434-w.
- Concentration of quantum states from quantum functional and transportation cost inequalities. J. Math. Phys., 60(1):012202, 22, 2019. doi:10.1063/1.5023210.
- Relating relative entropy, optimal transport and Fisher information: a quantum HWI inequality. Ann. Henri Poincaré, 21(7):2115–2150, 2020. doi:10.1007/s00023-020-00891-8.
- Gravity from thermodynamics: optimal transport and negative effective dimensions. SciPost Phys., 15(2):Paper No. 039, 55, 2023. doi:10.21468/scipostphys.15.2.039.
- The quantum Wasserstein distance of order 1. IEEE Trans. Inform. Theory, 67(10):6627–6643, 2021. doi:10.1109/TIT.2021.3076442.
- Quantum optimal transport with quantum channels. Ann. Henri Poincaré, 22(10):3199–3234, 2021. doi:10.1007/s00023-021-01042-3.
- Quantum optimal transport: quantum channels and qubits. In Jan Maas, Simone Rademacher, Tamás Titkos, and Dániel Virosztek, editors, Optimal Transport on Quantum Structures. Springer Nature, 2024. arXiv:2307.16268.
- Rocco Duvenhage. Optimal quantum channels. Phys. Rev. A, 104(3):Paper No. 032604, 8, 2021. doi:10.1103/physreva.104.032604.
- Extending quantum detailed balance through optimal transport, 2022. arXiv:2206.15287.
- Regularized discrete optimal transport. SIAM J. Imaging Sci., 7(3):1853–1882, 2014. doi:10.1137/130929886.
- Alessio Figalli. The Monge-Ampère equation and its applications. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2017. doi:10.4171/170.
- Quantum Monge-Kantorovich Problem and Transport Distance between Density Matrices. Phys. Rev. Lett., 129(11):Paper No. 110402, 2022. doi:10.1103/physrevlett.129.110402.
- Quantum Wasserstein isometries on the qubit state space. J. Math. Anal. Appl., 522:126955, 2023.
- On the mean field and classical limits of quantum mechanics. Comm. Math. Phys., 343(1):165–205, 2016. doi:10.1007/s00220-015-2485-7.
- The Schrödinger equation in the mean-field and semiclassical regime. Arch. Ration. Mech. Anal., 223(1):57–94, 2017. doi:10.1007/s00205-016-1031-x.
- Wave packets and the quadratic Monge-Kantorovich distance in quantum mechanics. C. R. Math. Acad. Sci. Paris, 356(2):177–197, 2018. doi:10.1016/j.crma.2017.12.007.
- Empirical measures and quantum mechanics: applications to the mean-field limit. Comm. Math. Phys., 369(3):1021–1053, 2019. doi:10.1007/s00220-019-03357-z.
- Mean-field and classical limit for the N𝑁Nitalic_N-body quantum dynamics with Coulomb interaction. Comm. Pure Appl. Math., 75(6):1332–1376, 2022. doi:10.1002/cpa.21986.
- Quantitative observability for the Schrödinger and Heisenberg equations: an optimal transport approach. Math. Models Methods Appl. Sci., 32(5):941–963, 2022. doi:10.1142/S021820252250021X.
- Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations. Probab. Theory Related Fields, 149(1-2):223–259, 2011.
- Wolfram Research, Inc. Mathematica, Version 14.0. Champaign, IL, 2024. URL: https://www.wolfram.com/mathematica.
- The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29(1):1–17, 1998. doi:10.1137/S0036141096303359.
- Metric character of the quantum jensen-shannon divergence. Phys. Rev. A, 77:052311, 2008.
- John Lott. Some geometric calculations on Wasserstein space. Comm. Math. Phys., 277(2):423–437, 2008. doi:10.1007/s00220-007-0367-3.
- A variational approach to the mean field planning problem. J. Funct. Anal., 277(6):1868–1957, 2019. doi:10.1016/j.jfa.2019.04.011.
- Filippo Santambrogio. Optimal transport for applied mathematicians, volume 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham, 2015. Calculus of variations, PDEs, and modeling. doi:10.1007/978-3-319-20828-2.
- Wasserstein dictionary learning: optimal transport-based unsupervised nonlinear dictionary learning. SIAM J. Imaging Sci., 11(1):643–678, 2018. doi:10.1137/17M1140431.
- Suvrit Sra. Metrics induced by jensen-shannon and related divergences on positive definite matrices. Linear Algebra and its Applications, 616:125–138, 2021. doi:10.1016/j.laa.2020.12.023.
- Quantum Wasserstein distance based on an optimization over separable states. Quantum, 7:1143, October 2023. doi:10.22331/q-2023-10-16-1143.
- Dániel Virosztek. The metric property of the quantum Jensen-Shannon divergence. Advances in Mathematics, 380:107595, March 2021. arXiv:1910.10447, doi:10.1016/j.aim.2021.107595.
- The Monge metric on the sphere and geometry of quantum states. J. Phys. A, 34(34):6689–6722, 2001. doi:10.1088/0305-4470/34/34/311.
- The Monge distance between quantum states. J. Phys. A, 31(45):9095–9104, 1998. doi:10.1088/0305-4470/31/45/009.