Observation of a time crystal comb in a driven-dissipative system with Rydberg gas (2402.13112v2)
Abstract: Time crystals, as temporal analogs of space crystals, manifest as stable and periodic behavior that breaks time translation symmetry. In an open quantum system, many-body interaction subjected to dissipation allows one to develop the time crystalline order in an unprecedented way, as refer to dissipative time crystal. Here we report the observation of a time crystal comb in the continuously driven-dissipative and strongly interacting Rydberg thermal gas, in which continuous time crystal and sub-harmonics of limit cycles as well as the high-order harmonic oscillation phases are observed in the same system by manipulating the Rydberg excitation. Our work provides new ways to explore the nonequilibrium phases of matter in open systems. Such time crystals with persistent oscillation rooted in emergent quantum correlations, may emerge as a ubiquitous tool in quantum metrology, for instance, continuous sensing and parameter estimation surpassing the standard quantum limit.
- Frank Wilczek, “Quantum time crystals,” Physical Review Letters 109, 160401 (2012).
- Patrick Bruno, “Impossibility of spontaneously rotating time crystals: A no-go theorem,” Physical Review Letters 111, 070402 (2013).
- Haruki Watanabe and Masaki Oshikawa, “Absence of quantum time crystals,” Physical Review Letters 114, 251603 (2015).
- Soham Pal, Naveen Nishad, T. S. Mahesh, and G. J. Sreejith, “Temporal order in periodically driven spins in star-shaped clusters,” Physical Review Letters 120, 180602 (2018).
- J. Smits, L. Liao, H. T. C. Stoof, and P. Van Der Straten, “Observation of a space-time crystal in a superfluid quantum gas,” Physical Review Letters 121, 185301 (2018).
- A. Kyprianidis, F. Machado, W. Morong, P. Becker, K. S. Collins, D. V. Else, L. Feng, P. W. Hess, C. Nayak, G. Pagano, N. Y. Yao, and C. Monroe, “Observation of a prethermal discrete time crystal,” Science 372, 1192–1196 (2021).
- J. Randall, C. E. Bradley, F. V. Van Der Gronden, A. Galicia, M. H. Abobeih, M. Markham, D. J. Twitchen, F. Machado, N. Y. Yao, and T. H. Taminiau, “Many-body–localized discrete time crystal with a programmable spin-based quantum simulator,” Science 374, 1474–1478 (2021).
- Xiao Mi, Matteo Ippoliti, Chris Quintana, Ami Greene, Zijun Chen, Jonathan Gross, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Alexander Bilmes, Alexandre Bourassa, Leon Brill, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Benjamin Chiaro, Roberto Collins, William Courtney, Dripto Debroy, Sean Demura, Alan R. Derk, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Edward Farhi, Austin G. Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Matthew P. Harrigan, Sean D. Harrington, Jeremy Hilton, Alan Ho, Sabrina Hong, Trent Huang, Ashley Huff, William J. Huggins, L. B. Ioffe, Sergei V. Isakov, Justin Iveland, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Tanuj Khattar, Seon Kim, Alexei Kitaev, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Joonho Lee, Kenny Lee, Aditya Locharla, Erik Lucero, Orion Martin, Jarrod R. McClean, Trevor McCourt, Matt McEwen, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles Neill, Michael Newman, Murphy Yuezhen Niu, Thomas E. O’Brien, Alex Opremcak, Eric Ostby, Balint Pato, Andre Petukhov, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vladimir Shvarts, Yuan Su, Doug Strain, Marco Szalay, Matthew D. Trevithick, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Adam Zalcman, Hartmut Neven, Sergio Boixo, Vadim Smelyanskiy, Anthony Megrant, Julian Kelly, Yu Chen, S. L. Sondhi, Roderich Moessner, Kostyantyn Kechedzhi, Vedika Khemani, and Pedram Roushan, “Time-crystalline eigenstate order on a quantum processor,” Nature 601, 531–536 (2022).
- Xu Zhang, Wenjie Jiang, Jinfeng Deng, Ke Wang, Jiachen Chen, Pengfei Zhang, Wenhui Ren, Hang Dong, Shibo Xu, Yu Gao, Feitong Jin, Xuhao Zhu, Qiujiang Guo, Hekang Li, Chao Song, Alexey V. Gorshkov, Thomas Iadecola, Fangli Liu, Zhe-Xuan Gong, Zhen Wang, Dong-Ling Deng, and H. Wang, “Digital quantum simulation of floquet symmetry-protected topological phases,” Nature 607, 468–473 (2022).
- J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, and C. Monroe, “Observation of a discrete time crystal,” Nature 543, 217–220 (2017).
- Soonwon Choi, Joonhee Choi, Renate Landig, Georg Kucsko, Hengyun Zhou, Junichi Isoya, Fedor Jelezko, Shinobu Onoda, Hitoshi Sumiya, Vedika Khemani, Curt Von Keyserlingk, Norman Y. Yao, Eugene Demler, and Mikhail D. Lukin, “Observation of discrete time-crystalline order in a disordered dipolar many-body system,” Nature 543, 221–225 (2017a).
- DinhDuy Vu and Sankar Das Sarma, “Dissipative Prethermal Discrete Time Crystal,” Physical Review Letters 130, 130401 (2023).
- R. Chitra and O. Zilberberg, “Dynamical many-body phases of the parametrically driven, dissipative Dicke model,” Physical Review A 92, 023815 (2015).
- Zongping Gong, Ryusuke Hamazaki, and Masahito Ueda, “Discrete time-crystalline order in cavity and circuit qed systems,” Physical Review Letters 120, 040404 (2018).
- Berislav Buča, Joseph Tindall, and Dieter Jaksch, “Non-stationary coherent quantum many-body dynamics through dissipation,” Nature Communications 10, 1730 (2019).
- Bihui Zhu, Jamir Marino, Norman Y Yao, Mikhail D Lukin, and Eugene A Demler, “Dicke time crystals in driven-dissipative quantum many-body systems,” New Journal of Physics 21, 073028 (2019).
- F. M. Gambetta, F. Carollo, M. Marcuzzi, J. P. Garrahan, and I. Lesanovsky, “Discrete Time Crystals in the Absence of Manifest Symmetries or Disorder in Open Quantum Systems,” Physical Review Letters 122, 015701 (2019).
- Cameron Booker, Berislav Buča, and Dieter Jaksch, “Non-stationarity and dissipative time crystals: Spectral properties and finite-size effects,” New Journal of Physics 22, 085007 (2020).
- Norman Y. Yao, Chetan Nayak, Leon Balents, and Michael P. Zaletel, “Classical discrete time crystals,” Nature Physics 16, 438–447 (2020).
- Hans Keßler, Phatthamon Kongkhambut, Christoph Georges, Ludwig Mathey, Jayson G. Cosme, and Andreas Hemmerich, “Observation of a dissipative time crystal,” Physical Review Letters 127, 043602 (2021).
- Phatthamon Kongkhambut, Hans Keßler, Jim Skulte, Ludwig Mathey, Jayson G. Cosme, and Andreas Hemmerich, “Realization of a periodically driven open three-level dicke model,” Physical Review Letters 127, 253601 (2021).
- Hossein Taheri, Andrey B. Matsko, Lute Maleki, and Krzysztof Sacha, “All-optical dissipative discrete time crystals,” Nature Communications 13, 848 (2022).
- F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M. Dalmonte, and R. Fazio, “Boundary time crystals,” Physical Review Letters 121, 035301 (2018).
- Phatthamon Kongkhambut, Jim Skulte, Ludwig Mathey, Jayson G. Cosme, Andreas Hemmerich, and Hans Keßler, “Observation of a continuous time crystal,” Science 377, 670–673 (2022).
- Yu-Hui Chen and Xiangdong Zhang, “Realization of an inherent time crystal in a dissipative many-body system,” Nature Communications 14, 6161 (2023).
- Karen Wadenpfuhl and C. Stuart Adams, “Emergence of synchronization in a driven-dissipative hot rydberg vapor,” Physical Review Letters 131, 143002 (2023).
- Dong-Sheng Ding, Zhengyang Bai, Zong-Kai Liu, Bao-Sen Shi, Guang-Can Guo, Weibin Li, and C. Stuart Adams, “Ergodicity breaking from rydberg clusters in a driven-dissipative many-body system,” (2023), arxiv:2305.07032 [cond-mat, physics:quant-ph] .
- Xiaoling Wu, Zhuqing Wang, Fan Yang, Ruochen Gao, Chao Liang, Meng Khoon Tey, Xiangliang Li, Thomas Pohl, and Li You, “Observation of a dissipative time crystal in a strongly interacting rydberg gas,” (2023), arxiv:2305.20070 [cond-mat, physics:physics, physics:quant-ph] .
- C. Carr, R. Ritter, C. G. Wade, C. S. Adams, and K. J. Weatherill, “Nonequilibrium phase transition in a dilute rydberg ensemble,” Physical Review Letters 111, 113901 (2013).
- Matteo Marcuzzi, Emanuele Levi, Sebastian Diehl, Juan P. Garrahan, and Igor Lesanovsky, “Universal Nonequilibrium Properties of Dissipative Rydberg Gases,” Physical Review Letters 113, 210401 (2014).
- Dong-Sheng Ding, Hannes Busche, Bao-Sen Shi, Guang-Can Guo, and Charles S. Adams, “Phase diagram and self-organizing dynamics in a thermal ensemble of strongly interacting rydberg atoms,” Physical Review X 10, 021023 (2020).
- Soonwon Choi, Norman Yao, and Mikhail Lukin, “Quantum metrology based on strongly correlated matter,” arXiv.1801.00042 (2017b), https://doi.org/10.48550/arXiv.1801.00042.
- Albert Cabot, Federico Carollo, and Igor Lesanovsky, “Continuous sensing and parameter estimation with the boundary time crystal,” Phys. Rev. Lett. 132, 050801 (2024).
- Changyuan Lyu, Sayan Choudhury, Chenwei Lv, Yangqian Yan, and Qi Zhou, “Eternal discrete time crystal beating the heisenberg limit,” Phys. Rev. Res. 2, 033070 (2020).