Papers
Topics
Authors
Recent
Search
2000 character limit reached

Profinite trees, through monads and the lambda-calculus

Published 20 Feb 2024 in cs.LO, cs.FL, and math.CT | (2402.13086v1)

Abstract: In its simplest form, the theory of regular languages is the study of sets of finite words recognized by finite monoids. The finiteness condition on monoids gives rise to a topological space whose points, called profinite words, encode the limiting behavior of words with respect to finite monoids. Yet, some aspects of the theory of regular languages are not particular to monoids and can be described in a general setting. On the one hand, Boja\'{n}czyk has shown how to use monads to generalize the theory of regular languages and has given an abstract definition of the free profinite structure, defined by codensity, given a fixed monad and a notion of finite structure. On the other hand, Salvati has introduced the notion of language of $\lambda$-terms, using denotational semantics, which generalizes the case of words and trees through the Church encoding. In recent work, the author and collaborators defined the notion of profinite $\lambda$-term using semantics in finite sets and functions, which extend the Church encoding to profinite words. In this article, we prove that these two generalizations, based on monads and denotational semantics, coincide in the case of trees. To do so, we consider the monad of abstract clones which, when applied to a ranked alphabet, gives the associated clone of ranked trees. This induces a notion of free profinite clone, and hence of profinite trees. The main contribution is a categorical proof that the free profinite clone on a ranked alphabet is isomorphic, as a Stone-enriched clone, to the clone of profinite $\lambda$-terms of Church type. Moreover, we also prove a parametricity theorem on families of semantic elements which provides another equivalent formulation of profinite trees in terms of Reynolds parametricity.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 3 likes about this paper.