Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tactile Perception in Upper Limb Prostheses: Mechanical Characterization, Human Experiments, and Computational Findings (2402.12989v2)

Published 20 Feb 2024 in cs.RO and cs.HC

Abstract: Our research investigates vibrotactile perception in four prosthetic hands with distinct kinematics and mechanical characteristics. We found that rigid and simple socket-based prosthetic devices can transmit tactile information and surprisingly enable users to identify the stimulated finger with high reliability. This ability decreases with more advanced prosthetic hands with additional articulations and softer mechanics. We conducted experiments to understand the underlying mechanisms. We assessed a prosthetic user's ability to discriminate finger contacts based on vibrations transmitted through the four prosthetic hands. We also performed numerical and mechanical vibration tests on the prostheses and used a machine learning classifier to identify the contacted finger. Our results show that simpler and rigid prosthetic hands facilitate contact discrimination (for instance, a user of a purely cosmetic hand can distinguish a contact on the index finger from other fingers with 83% accuracy), but all tested hands, including soft advanced ones, performed above chance level. Despite advanced hands reducing vibration transmission, a machine learning algorithm still exceeded human performance in discriminating finger contacts. These findings suggest the potential for enhancing vibrotactile feedback in advanced prosthetic hands and lay the groundwork for future integration of such feedback in prosthetic devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. S. J. Bensmaia, D. J. Tyler, and S. Micera, “Restoration of sensory information via bionic hands,” Nature Biomedical Engineering, pp. 1–13, 2020.
  2. U. Wijk, I. Carlsson, C. Antfolk, A. Björkman, and B. Rosén, “Sensory feedback in hand prostheses: A prospective study of everyday use,” Frontiers in Neuroscience, vol. 14, p. 663, 07 2020.
  3. P. D. Marasco, K. Kim, J. E. Colgate, M. A. Peshkin, and T. A. Kuiken, “Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees,” Brain, vol. 134, no. 3, 2011.
  4. C. Dietrich, K. Walter-Walsh, S. Preißler, G. O. Hofmann, O. W. Witte, W. H. Miltner, and T. Weiss, “Sensory feedback prosthesis reduces phantom limb pain: proof of a principle,” Neuroscience letters, vol. 507, no. 2, 2012.
  5. M. N. Nemah, C. Y. Low, O. H. Aldulaymi, P. Ong, A. A. Qasim, et al., “A review of non-invasive haptic feedback stimulation techniques for upper extremity prostheses,” International Journal of Integrated Engineering, vol. 11, no. 1, 2019.
  6. A. Akhtar, J. Cornman, J. Austin, and D. Bala, “Touch feedback and contact reflexes using the psyonic ability hand,” 2020.
  7. J. Schofield, K. Schoepp, J. Carey, and J. Hebert, “Applications of sensory feedback in motorized upper extremity prosthesis: A review,” Expert review of medical devices, vol. 11, pp. 1–13, 06 2014.
  8. J. W. Sensinger and S. Dosen, “A review of sensory feedback in upper-limb prostheses from the perspective of human motor control,” Frontiers in neuroscience, vol. 14, 2020.
  9. D. Farina and S. Amsuss, “Reflections on the present and future of upper limb prostheses,” Expert review of medical devices, vol. 13, 02 2016.
  10. Y. Shao, V. Hayward, and Y. Visell, “Compression of dynamic tactile information in the human hand,” Science Advances, vol. 6, no. 16, 2020. [Online]. Available: https://www.science.org/doi/abs/10.1126/sciadv.aaz1158
  11. L. E. Miller, L. Montroni, E. Koun, R. Salemme, V. Hayward, and A. Farnè, “Sensing with tools extends somatosensory processing beyond the body,” Nature, vol. 561, no. 7722, pp. 239–242, 2018.
  12. G. Lundborg and B. Rosen, “Sensory substitution in prosthetics,” Hand clinics, vol. 17, no. 3, 2001.
  13. R. Jacobs, R. Brånemark, K. Olmarker, B. Rydevik, D. v. Steenberghe, and P.-I. Brånemark, “Evaluation of the psychophysical detection threshold level for vibrotactile and pressure stimulation of prosthetic limbs using bone anchorage or soft tissue support,” Prosthetics and orthotics international, vol. 24, no. 2, 2000.
  14. E. Amoruso, L. Dowdall, M. Kollamkulam, O. Ukaegbu, P. Kieliba, T. Ng, H. Dempsey-Jones, D. Clode, and T. Makin, “Intrinsic somatosensory feedback supports motor control and learning to operate artificial body parts,” Journal of Neural Engineering, vol. 19, no. 1, p. 016006, 2022.
  15. A. Ajoudani, S. B. Godfrey, M. Bianchi, M. G. Catalano, G. Grioli, N. Tsagarakis, and A. Bicchi, “Exploring teleimpedance and tactile feedback for intuitive control of the pisa/iit softhand,” IEEE Transactions on Haptics, vol. 7, no. 2, pp. 203–215, 2014.
  16. A. S. Ivani, F. Barontini, M. G. Catalano, G. Grioli, M. Bianchi, and A. Bicchi, “Vibes: Vibro-inertial bionic enhancement system in a prosthetic socket,” 2023, pp. 1–6.
  17. S. B. Godfrey, K. D. Zhao, A. Theuer, M. G. Catalano, M. Bianchi, R. Breighner, D. Bhaskaran, R. Lennon, G. Grioli, M. Santello, A. Bicchi, and K. Andrews, “The softhand pro: Functional evaluation of a novel, flexible, and robust myoelectric prosthesis,” PLOS ONE, vol. 13, no. 10, 10 2018. [Online]. Available: https://doi.org/10.1371/journal.pone.0205653
  18. C. Piazza, G. Grioli, M. Catalano, and A. Bicchi, “A century of robotic hands,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, 2019.
  19. M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class classification: an overview,” arXiv preprint arXiv:2008.05756, 2020.
  20. C. Della Santina, C. Piazza, G. Gasparri, M. Bonilla, M. Catalano, G. Grioli, M. Garabini, and A. Bicchi, “The quest for natural machine motion: An open platform to fast-prototyping articulated soft robots,” IEEE Robotics and Automation Magazine, vol. PP, 02 2017.
  21. N. Landin, J. M. Romano, W. McMahan, and K. J. Kuchenbecker, “Dimensional reduction of high-frequency accelerations for haptic rendering.”   Springer, 2010.
  22. H. Lee, G. I. Tombak, G. Park, and K. J. Kuchenbecker, “Perceptual space of algorithms for three-to-one dimensional reduction of realistic vibrations,” IEEE Transactions on Haptics, vol. 15, no. 3, pp. 521–534, 2022.
  23. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, 1997.
  24. R. C. Staudemeyer and E. R. Morris, “Understanding lstm–a tutorial into long short-term memory recurrent neural networks,” arXiv preprint arXiv:1909.09586, 2019.
  25. Y. Shao, H. Hu, and Y. Visell, “A wearable tactile sensor array for large area remote vibration sensing in the hand,” IEEE Sensors Journal, vol. 20, no. 12, pp. 6612–6623, 2020.
  26. B. Stephens-Fripp, M. J. Walker, E. Goddard, and G. Alici, “A survey on what australians with upper limb difference want in a prosthesis: justification for using soft robotics and additive manufacturing for customized prosthetic hands,” Disability and Rehabilitation: Assistive Technology, 2019.
  27. P. Capsi Morales, C. Piazza, M. Catalano, G. Grioli, L. Schiavon, E. Fiaschi, and A. Bicchi, “Comparison between rigid and soft poly-articulated prosthetic hands in non-expert myo-electric users shows advantages of soft robotics,” Scientific Reports, vol. 11, 12 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets