Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Infinitely many solutions for a class of fractional Schrodinger equations coupled with neutral scalar field (2402.12006v1)

Published 19 Feb 2024 in math.AP

Abstract: We study the fractional Schr\"{o}dinger equations coupled with a neutral scalar field $$ (-\Delta)s u+V(x)u=K(x)\phi u +g(x)|u|{q-2}u, \quad x\in \mathbb{R}3,\qquad (I-\Delta)t \phi=K(x)u2, \quad x\in \mathbb{R}3, $$ where $(-\Delta)s$ and $(I-\Delta)t$ denote the fractional Laplacian and Bessel operators with $\frac{3}{4} <s<1$ and $0<t<1$, respectively. Under some suitable assumptions for the external potentials $V$, $K$ and $g$, given $q\in(1,2)\cup(2,2_s*)$ with $2_s*:= \frac{6}{3-2s}$, with the help of an improved Fountain theorem dealing with a class of strongly indefinite variational problems approached by Gu-Zhou [Adv. Nonlinear Stud., {\bf 17} (2017), 727--738], we show that the system admits infinitely many nontrivial solutions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. D.R. Adams, L.I. Hedberg, Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften 314. Springer-Verlag, Berlin, 1996.
  2. C.O. Alves, L. Shen, On existence of solutions for some classes of elliptic problems with supercritical exponential growth, Math. Z., (2024), 306:29.
  3. G. Bisci, V.D. Rădulescu, Ground state solutions of scalar field fractional Schördinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 2985–3008.
  4. L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245–1260.
  5. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573.
  6. D.E. Edmunds, W.D. Evans, Spectral theory and differential operators, The Clarendon Press, Oxford University Press, New York, 1987.
  7. Y. Egorov, V. Kondratiev, On Spectral Theory of Elliptic Operators, Birkhäuser, Basel, 1996.
  8. M.M. Fall, V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35 (2015), no. 12, 5827–5867.
  9. P. Felmer, A. Quaas, J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237–1262.
  10. P. Felmer, I. Vergara, Scalar field equation with non-local diffusion, Nonlinear Differ. Equ. Appl., 22 (2015), 1411–1428.
  11. L. Gu, H. Zhou, An improved fountain theorem and its application, Adv. Nonlinear Stud., 17 (2017), 727–738.
  12. X. He, W. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differential Equations, 55 (2016), 1–39.
  13. N. Ikoma, Existence of solutions of scalar field equations with fractional operator, J. Fixed Point Theory Appl., 19 (2017), 649–690.
  14. W. Kryszewski, A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations, 3 (1998), 441–472.
  15. N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305.
  16. N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 56–108.
  17. E.H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997.
  18. A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259–287.
  19. P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270–291.
  20. S. Secchi, Concave-convex nonlinearities for some nonlinear fractional equations involving the Bessel operator, Complex Var. Elliptic Equ., 62 (2017), 654–669.
  21. S. Secchi, On some nonlinear fractional equations involving the Bessel operator, J. Dynam. Differential Equations, 29 (2017), 1173–1193.
  22. S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in ℝNsuperscriptℝ𝑁\mathbb{R}^{N}blackboard_R start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT, J. Math. Phys., 54 (2013), 031501.
  23. L. Shen, Multiplicity and concentration results for fractional Schrödinger-Poisson systems involving a Bessel operator, Math. Methods Appl. Sci., 41 (2018), 7599–7611.
  24. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J. 1970.
  25. A. Szulkin, T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802–3822.
  26. A. Szulkin, T. Weth, The method of Nehari manifold, Handbook of nonconvex analysis and applications, 597–632, Int. Press, Somerville, MA, 2010.
  27. W.P. Ziemer, Weakly Differentiable Functions, Springer, New York (1989).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com