Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Building a Hierarchical Architecture and Communication Model for the Quantum Internet (2402.11806v2)

Published 19 Feb 2024 in quant-ph and cs.NI

Abstract: The research of architecture has tremendous significance in realizing quantum Internet. Although there is not yet a standard quantum Internet architecture, the distributed architecture is one of the possible solutions, which utilizes quantum repeaters or dedicated entanglement sources in a flat structure for entanglement preparation & distribution. In this paper, we analyze the distributed architecture in detail and demonstrate that it has three limitations: 1) possible high maintenance overhead, 2) possible low-performance entanglement distribution, and 3) unable to support optimal entanglement routing. We design a hierarchical quantum Internet architecture and a communication model to solve the problems above. We also present a W-state Based Centralized Entanglement Preparation & Distribution (W-state Based CEPD) scheme and a Centralized Entanglement Routing (CER) algorithm within our hierarchical architecture and perform an experimental comparison with other entanglement preparation & distribution schemes and entanglement routing algorithms within the distributed architecture. The evaluation results show that the entanglement distribution efficiency of hierarchical architecture is 11.5% higher than that of distributed architecture on average (minimum 3.3%, maximum 37.3%), and the entanglement routing performance of hierarchical architecture is much better than that of a distributed architecture according to the fidelity and throughput.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. D. Cuomo, M. Caleffi, and A. S. Cacciapuoti, “Towards a distributed quantum computing ecosystem,” IET Quantum Communication, vol. 1, no. 1, pp. 3–8, 2020.
  2. S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Optimal architectures for long distance quantum communication,” Scientific reports, vol. 6, no. 1, p. 20463, 2016.
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Physical review letters, vol. 70, no. 13, p. 1895, 1993.
  4. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.
  5. S. Olmschenk, D. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science, vol. 323, no. 5913, pp. 486–489, 2009.
  6. J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Physical review letters, vol. 80, no. 18, p. 3891, 1998.
  7. W. Kozlowski, S. Wehner, R. Van Meter, B. Rijsman, A. Cacciapuoti, M. Caleffi, and S. Nagayama, “Rfc 9340 architectural principles for a quantum internet,” Architecture, vol. 4, p. 4, 2023.
  8. R. Van Meter, R. Satoh, N. Benchasattabuse, T. Matsuo, M. Hajdušek, T. Satoh, S. Nagayama, and S. Suzuki, “A quantum internet architecture,” arXiv preprint arXiv:2112.07092, 2021.
  9. Z. Li, K. Xue, J. Li, N. Yu, J. Liu, D. S. Wei, Q. Sun, and J. Lu, “Building a large-scale and wide-area quantum internet based on an osi-alike model,” China Communications, vol. 18, no. 10, pp. 1–14, 2021.
  10. T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive cqed interactions between matter qubits and bright coherent light,” New Journal of Physics, vol. 8, no. 9, p. 184, 2006.
  11. S. Bogdanović, S. B. Van Dam, C. Bonato, L. C. Coenen, A.-M. J. Zwerver, B. Hensen, M. S. Liddy, T. Fink, A. Reiserer, M. Lončar et al., “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Applied Physics Letters, vol. 110, no. 17, p. 171103, 2017.
  12. X. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity qed,” Physical Review A, vol. 67, no. 4, p. 044301, 2003.
  13. S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Physical Review A, vol. 71, no. 6, p. 060310, 2005.
  14. E. T. Campbell and S. C. Benjamin, “Measurement-based entanglement under conditions of extreme photon loss,” Physical review letters, vol. 101, no. 13, p. 130502, 2008.
  15. C. Jones, D. Kim, M. T. Rakher, P. G. Kwiat, and T. D. Ladd, “Design and analysis of communication protocols for quantum repeater networks,” New Journal of Physics, vol. 18, no. 8, p. 083015, 2016.
  16. Z.-S. Yuan, X.-H. Bao, C.-Y. Lu, J. Zhang, C.-Z. Peng, and J.-W. Pan, “Entangled photons and quantum communication,” Physics Reports, vol. 497, no. 1, pp. 1–40, 2010.
  17. M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. R. Leeb, and A. Zeilinger, “Long-distance quantum communication with entangled photons using satellites,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, no. 6, pp. 1541–1551, 2003.
  18. S. Shi and C. Qian, “Concurrent entanglement routing for quantum networks: Model and designs,” in Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication, 2020, pp. 62–75.
  19. M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, “Routing entanglement in the quantum internet,” npj Quantum Information, vol. 5, no. 1, pp. 1–9, 2019.
  20. R. Van Meter, T. Satoh, T. D. Ladd, W. J. Munro, and K. Nemoto, “Path selection for quantum repeater networks,” Networking Science, vol. 3, no. 1, pp. 82–95, 2013.
  21. L. Gyongyosi and S. Imre, “Entanglement-gradient routing for quantum networks,” Scientific reports, vol. 7, no. 1, pp. 1–14, 2017.
  22. K. Chakraborty, F. Rozpedek, A. Dahlberg, and S. Wehner, “Distributed routing in a quantum internet,” arXiv preprint arXiv:1907.11630, 2019.
  23. M. Caleffi, “Optimal routing for quantum networks,” IEEE Access, vol. 5, pp. 22 299–22 312, 2017.
  24. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,” ACM SIGCOMM computer communication review, vol. 38, no. 2, pp. 69–74, 2008.
  25. M. Schlosshauer, “Quantum decoherence,” Physics Reports, vol. 831, pp. 1–57, 2019.
  26. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018.
  27. W. Kozlowski and S. Wehner, “Towards large-scale quantum networks,” in Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication, 2019, pp. 1–7.
  28. J. Illiano, M. Caleffi, A. Manzalini, and A. S. Cacciapuoti, “Quantum internet protocol stack: A comprehensive survey,” Computer Networks, p. 109092, 2022.
  29. R. Van Meter, J. Touch, and C. Horsman, “Recursive quantum repeater networks,” arXiv preprint arXiv:1105.1238, 2011.
  30. F. Chiti, R. Fantacci, R. Picchi, and L. Pierucci, “Towards the quantum internet: Satellite control plane architectures and protocol design,” Future Internet, vol. 13, no. 8, p. 196, 2021.
  31. R. Picchi, F. Chiti, R. Fantacci, and L. Pierucci, “Towards quantum satellite internetworking: A software-defined networking perspective,” IEEE Access, vol. 8, pp. 210 370–210 381, 2020.
  32. G. Avis, F. Rozpedek, and S. Wehner, “Analysis of multipartite entanglement distribution using a central quantum-network node,” Physical Review A, vol. 107, no. 1, p. 012609, 2023.
  33. K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, “Quantum memories: emerging applications and recent advances,” Journal of modern optics, vol. 63, no. 20, pp. 2005–2028, 2016.
  34. R. Yehia, S. Neves, E. Diamanti, and I. Kerenidis, “Quantum city: simulation of a practical near-term metropolitan quantum network,” arXiv preprint arXiv:2211.01190, 2022.
  35. S. DiAdamo, B. Qi, G. Miller, R. Kompella, and A. Shabani, “Packet switching in quantum networks: A path to the quantum internet,” Physical Review Research, vol. 4, no. 4, p. 043064, 2022.
  36. S. B. Yoo and P. Kumar, “Quantum wrapper networking,” in 2021 IEEE Photonics Conference (IPC).   IEEE, 2021, pp. 1–2.
  37. A. Dahlberg, M. Skrzypczyk, T. Coopmans, L. Wubben, F. Rozpedek, M. Pompili, A. Stolk, P. Pawełczak, R. Knegjens, J. de Oliveira Filho et al., “A link layer protocol for quantum networks,” in Proceedings of the ACM Special Interest Group on Data Communication, 2019, pp. 159–173.
  38. F. Nosrati, A. Castellini, G. Compagno, and R. Lo Franco, “Robust entanglement preparation against noise by controlling spatial indistinguishability,” npj Quantum Information, vol. 6, no. 1, pp. 1–7, 2020.
  39. C. Śliwa and K. Banaszek, “Conditional preparation of maximal polarization entanglement,” Phys. Rev. A, vol. 67, p. 030101, Mar 2003. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.67.030101
  40. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-q nanocavity with a 2-ns photon lifetime,” Optics express, vol. 15, no. 25, pp. 17 206–17 213, 2007.
  41. F. Treussart, V. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic kerr bistability of high-q microsphere resonators in superfluid helium,” The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, vol. 1, no. 3, pp. 235–238, 1998.
  42. “Source code of the hierarchical quantum internet architecture simulations,” 2023. [Online]. Available: https://github.com/HeLabFzu/HQIA
  43. E. Alden and A. Leanhardt, “Calculation of tripartite entangled states generated by spontaneous two-photon cascade emission,” in Laser Science.   Optica Publishing Group, 2010, p. LThE2.
  44. M. H. Abobeih, J. Cramer, M. A. Bakker, N. Kalb, M. Markham, D. J. Twitchen, and T. H. Taminiau, “One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment,” Nature communications, vol. 9, no. 1, pp. 1–8, 2018.
  45. A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature, vol. 508, no. 7495, pp. 237–240, 2014.
  46. N. Kiesel, M. Bourennane, C. Kurtsiefer, H. Weinfurter, D. Kaszlikowski, W. Laskowski, and M. Zukowski, “Three-photon w-state,” Journal of Modern Optics, vol. 50, no. 6-7, pp. 1131–1138, 2003.
  47. E. Alden, S. Degenkolb, K. Moore, T. Chupp, and A. Leanhardt, “Atom-photon entanglement and magnetometry in yb,” 2012.
  48. R. Zhao, Y. Dudin, S. Jenkins, C. Campbell, D. Matsukevich, T. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nature Physics, vol. 5, no. 2, pp. 100–104, 2009.
  49. “Netsquid,” 2021. [Online]. Available: https://netsquid.org
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com