Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decoding News Narratives: A Critical Analysis of Large Language Models in Framing Detection (2402.11621v3)

Published 18 Feb 2024 in cs.CL

Abstract: Previous studies on framing have relied on manual analysis or fine-tuning models with limited annotated datasets. However, pre-trained models, with their diverse training backgrounds, offer a promising alternative. This paper presents a comprehensive analysis of GPT-4, GPT-3.5 Turbo, and FLAN-T5 models in detecting framing in news headlines. We evaluated these models in various scenarios: zero-shot, few-shot with in-domain examples, cross-domain examples, and settings where models explain their predictions. Our results show that explainable predictions lead to more reliable outcomes. GPT-4 performed exceptionally well in few-shot settings but often misinterpreted emotional language as framing, highlighting a significant challenge. Additionally, the results suggest that consistent predictions across multiple models could help identify potential annotation inaccuracies in datasets. Finally, we propose a new small dataset for real-world evaluation on headlines from a diverse set of topics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)