Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Saturability of the Quantum Cramér-Rao Bound in Multiparameter Quantum Estimation at the Single-Copy Level (2402.11567v5)

Published 18 Feb 2024 in quant-ph, cs.SY, and eess.SY

Abstract: The quantum Cram\'{e}r-Rao bound (QCRB) as the ultimate lower bound for precision in quantum parameter estimation is only known to be saturable in the multiparameter setting in special cases and under conditions such as full or average commutavity of the symmetric logarithmic derivatives (SLDs) associated with the parameters. Moreover, for general mixed states, collective measurements over infinitely many identical copies of the quantum state are generally required to attain the QCRB. In the important and experimentally relevant single-copy scenario, a necessary condition for saturating the QCRB in the multiparameter setting for general mixed states is the so-called partial commutativity condition on the SLDs. However, it is not known if this condition is also sufficient. This paper establishes necessary and sufficient conditions for saturability of the multiparameter QCRB in the single-copy setting in terms of the commutativity of a set of projected SLDs and the existence of a unitary solution to a system of nonlinear partial differential equations. New necessary conditions that imply partial commutativity are also obtained, which together with another condition become sufficient. Moreover, when the sufficient conditions are satisfied an optimal measurement saturating the QCRB can be chosen to be projective and explicitly characterized. An example is developed to illustrate the case of a multiparameter quantum state where the conditions derived herein are satisfied and can be explicitly verified.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. J. Liu, H. Yuan, X. Lu, and X. Wang, “Quantum Fisher information matrix and multiparameter estimation,” J. Phys. A: Math. Theor., vol. 53, p. 023001, 2020.
  2. J. Liu, M. Zhang, H. Chen, L. Wang, and H. Yuan, “Optimal scheme for quantum metrology,” Adv. Quantum Technol., vol. 5, p. 2100080, 2022.
  3. M. Barbieri, “Optical quantum metrology,” Phys. Rev. X Quantum, vol. 3, p. 023001, 2022.
  4. M. Szczykulska, T. Baumgratz, and A. Datta, “Multi-parameter quantum metrology,” Adv. Phys:X, vol. 1, p. 621, 2016.
  5. F. Albarelli, M. Barbieri, M. G. Genoni, and I. Gianani, “A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging,” Phys. Lett. A, vol. 384, p. 126311, 2020.
  6. R. Demkowicz-Dobrański, W. Góriecki, and M. Gǔta̧, “Multi-parameter estimation beyond quantum Fisher information,” J. Phys. A: Math. Theor., vol. 53, p. 363001, 2020.
  7. P. Horodecki, L. Rudnicki, and K. Źyczkowski, “Five open problems in quantum information theory,” Phys. Rev. X Quantum, vol. 3, p. 010101, 2022.
  8. S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański, “Compatibility in multiparameter quantum metrology,” Phys. Rev. A, vol. 94, p. 052108, 2016.
  9. J. Yang, S. Pang, Y. Zhou, and A. N. Jordan, “Optimal measurements for quantum multiparameter estimation with general states,” Phys. Rev. A, vol. 100, p. 032104, 2019.
  10. L. Pezzé et al., “Optimal measurements for simultaneous quantum estimation of multiple phases,” Phys. Rev. Lett., vol. 119, p. 130504, 2017.
  11. J. Suzuki, Y. Yang, and M. Hayashi, “Quantum state estimation with nuisance parameters,” J. Phys. A: Math. Theor., vol. 53, p. 453001, 2020.
  12. M. D. Vidrigin et al., “Joint estimation of phase and phase diffusion for quantum metrology,” Nat. Commun., vol. 5, p. 3532, 2014.
  13. K. Matsumoto, “A new approach to the Cramér-Rao-type bound of the pure-state model,” J. Phys. A: Math. Gen., vol. 35, p. 3111, 2002.
Citations (3)

Summary

We haven't generated a summary for this paper yet.