Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Evaluation of Neural and Neuro-symbolic Approaches to Real-time Multimodal Complex Event Detection (2402.11403v2)

Published 17 Feb 2024 in cs.AI

Abstract: Robots and autonomous systems require an understanding of complex events (CEs) from sensor data to interact with their environments and humans effectively. Traditional end-to-end neural architectures, despite processing sensor data efficiently, struggle with long-duration events due to limited context sizes and reasoning capabilities. Recent advances in neuro-symbolic methods, which integrate neural and symbolic models leveraging human knowledge, promise improved performance with less data. This study addresses the gap in understanding these approaches' effectiveness in complex event detection (CED), especially in temporal reasoning. We investigate neural and neuro-symbolic architectures' performance in a multimodal CED task, analyzing IMU and acoustic data streams to recognize CE patterns. Our methodology includes (i) end-to-end neural architectures for direct CE detection from sensor embeddings, (ii) two-stage concept-based neural models mapping sensor embeddings to atomic events (AEs) before CE detection, and (iii) a neuro-symbolic approach using a symbolic finite-state machine for CE detection from AEs. Empirically, the neuro-symbolic architecture significantly surpasses purely neural models, demonstrating superior performance in CE recognition, even with extensive training data and ample temporal context for neural approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. SNOY, “Sony aibo,” 2018. Accessed on Sep. 14, 2023.
  2. Vayyar, “Vayyar care,” 2022. Accessed on Sep. 14, 2023.
  3. M. Roig Vilamala, T. Xing, H. Taylor, L. Garcia, M. Srivastava, L. Kaplan, A. Preece, A. Kimmig, and F. Cerutti, “Deepprobcep: A neuro-symbolic approach for complex event processing in adversarial settings,” Expert Systems with Applications, vol. 215, p. 119376, 2023.
  4. T. Xing, L. Garcia, M. R. Vilamala, F. Cerutti, L. Kaplan, A. Preece, and M. Srivastava, “Neuroplex: Learning to detect complex events in sensor networks through knowledge injection,” in Proceedings of the 18th Conference on Embedded Networked Sensor Systems, SenSys ’20, (New York, NY, USA), p. 489–502, Association for Computing Machinery, 2020.
  5. J. Mao, Z. Luo, C. Gan, J. B. Tenenbaum, J. Wu, L. P. Kaelbling, and T. D. Ullman, “Temporal and object quantification networks,” CoRR, vol. abs/2106.05891, 2021.
  6. G. Cugola and A. Margara, “Processing flows of information: From data stream to complex event processing,” ACM Comput. Surv., vol. 44, jun 2012.
  7. N. Schultz-Møller, M. Migliavacca, and P. Pietzuch, “Distributed complex event processing with query rewriting,” in Proceedings of the Third ACM International Conference on Distributed Event-Based Systems, 07 2009.
  8. H. Debar and A. Wespi, “Aggregation and correlation of intrusion-detection alerts,” in Lecture Notes in Computer Science, pp. 85–103, Springer Berlin Heidelberg, 2001.
  9. R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt, “Deepproblog: Neural probabilistic logic programming,” in Advances in Neural Information Processing Systems (S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates, Inc., 2018.
  10. R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. D. Raedt, “Deepproblog: Neural probabilistic logic programming,” CoRR, vol. abs/1907.08194, 2019.
  11. M. Li, S. Li, Z. Wang, L. Huang, K. Cho, H. Ji, J. Han, and C. Voss, “The future is not one-dimensional: Complex event schema induction by graph modeling for event prediction,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, (Online and Punta Cana, Dominican Republic), pp. 5203–5215, Association for Computational Linguistics, Nov. 2021.
  12. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2009.
  13. Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang, S. Ruder, and D. Metzler, “Long range arena: A benchmark for efficient transformers,” CoRR, vol. abs/2011.04006, 2020.
  14. Y. Bai, X. Lv, J. Zhang, H. Lyu, J. Tang, Z. Huang, Z. Du, X. Liu, A. Zeng, L. Hou, Y. Dong, J. Tang, and J. Li, “Longbench: A bilingual, multitask benchmark for long context understanding,” 2023.
  15. F. D. la Torre Frade, J. K. Hodgins, A. W. Bargteil, X. M. Artal, J. C. Macey, A. C. I. Castells, and J. Beltran, “Guide to the carnegie mellon university multimodal activity (cmu-mmac) database,” Tech. Rep. CMU-RI-TR-08-22, Carnegie Mellon University, Pittsburgh, PA, April 2008.
  16. M. Martínez-Zarzuela, J. González-Alonso, M. Antón-Rodríguez, F. J. Díaz-Pernas, H. Müller, and C. Simón-Martínez, “Vidimu. multimodal video and imu kinematic dataset on daily life activities using affordable devices,” 2023.
  17. K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,” in Proceedings of the 23rd Annual ACM Conference on Multimedia, pp. 1015–1018, ACM Press, 2015.
  18. M. Moreaux, M. G. Ortiz, I. Ferrané, and F. Lerasle, “Benchmark for kitchen20, a daily life dataset for audio-based human action recognition,” in 2019 International Conference on Content-Based Multimedia Indexing (CBMI), pp. 1–6, 2019.
  19. G. M. Weiss, K. Yoneda, and T. Hayajneh, “Smartphone and smartwatch-based biometrics using activities of daily living,” IEEE Access, vol. 7, pp. 133190–133202, 2019.
  20. B. Oluwalade, S. Neela, J. Wawira, T. Adejumo, and S. Purkayastha, “Human activity recognition using deep learning models on smartphones and smartwatches sensor data,” 2021.
  21. T. Baltrusaitis, C. Ahuja, and L. Morency, “Multimodal machine learning: A survey and taxonomy,” CoRR, vol. abs/1705.09406, 2017.
  22. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  23. S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” CoRR, vol. abs/1803.01271, 2018.
  24. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017.
  25. T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” CoRR, vol. abs/1708.02002, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets