Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unified Capacity Results for Free-Space Optical Communication Systems Over Gamma-Gamma Atmospheric Turbulence Channels (2402.11352v6)

Published 17 Feb 2024 in cs.IT, eess.SP, and math.IT

Abstract: Transmit power control, as in the mobile wireless channels, can enable a robust and spectrally efficient communication through atmospheric turbulence in terrestrial free-space optical (FSO) channels. With optical bandwidths in excess of several GHz and eye safety regulations limiting the transmit optical power, the per hertz signal-to-noise ratio (SNR) in terrestrial FSO systems can possibly become limited. This is especially true for future high-bandwidth and long-haul terrestrial systems based on coherent optical communications. Hence, power control becomes significant in terrestrial FSO communication systems. However, a comprehensive assessment of the impact of dynamic power adaptation in the existing terrestrial FSO systems is lacking in the literature. In this paper, we investigate perfectly beam power-controlled terrestrial FSO communication systems with heterodyne detection and direct detection based receivers operating under shot noise-limited conditions. Under these systems considerations, we derive unified exact and asymptotic capacity formulas for the Gamma-Gamma turbulence channels with and without pointing errors. The numerical results highlight the intricate relations of atmospheric turbulence and pointing error parameters in typical terrestrial FSO channel settings. More importantly, a concrete assessment of the impact of the key channel parameters on the capacity performances of the aforementioned FSO systems is performed revealing several novel and interesting insights.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Q. Liu, C. Qiao, G. Mitchell, and S. Stanton, “Optical wireless communication networks for first- and last-mile broadband access,” IEEE/OSA J. Opt. Netw., vol. 4, no. 12, p. 807–828, 2005.
  2. D. Cornwell, “Laser communication from the Moon at 622Mb/s,” Available: http://spie.org/x107507.xml, 2014.
  3. H. Haan and M. Tausendfreund, “Free-space optical data transmission for military and civil applications: A company report on technical solutions and market investigation,” in 2013 15th International Conference on Transparent Optical Networks (ICTON).   IEEE, 2013, pp. 1–4.
  4. D. J. Heatley, D. R. Wisely, I. Neild, and P. Cochrane, “Optical wireless: The story so far,” IEEE Commun. Mag., vol. 36, no. 12, pp. 72–74, 1998.
  5. J. R. Barry and E. A. Lee, “Performance of coherent optical receivers,” Proceedings of the IEEE, vol. 78, no. 8, pp. 1369–1394, 1990.
  6. S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” Journal of Optical Networking, vol. 2, no. 6, pp. 178–200, 2003.
  7. S. Arnon, “Effects of atmospheric turbulence and building sway on optical wireless-communication systems,” Opt. Lett., vol. 28, no. 2, pp. 129–131, Jan 2003.
  8. M. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Optical Engineering, vol. 40, no. 8, pp. 1554–1562, 2001.
  9. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. Al-Habash, “Theory of optical scintillation,” JOSA A, vol. 16, no. 6, pp. 1417–1429, 1999.
  10. A. A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” Journal of Lightwave technology, vol. 25, no. 7, pp. 1702–1710, 2007.
  11. F. Yang, J. Cheng, and T. A. Tsiftsis, “Free-space optical communication with nonzero boresight pointing errors,” IEEE Transactions on Communications, vol. 62, no. 2, pp. 713–725, 2014.
  12. M. A. Kashani, M. Uysal, and M. Kavehrad, “A novel statistical channel model for turbulence-induced fading in free-space optical systems,” Journal of Lightwave Technology, vol. 33, no. 11, pp. 2303–2312, 2015.
  13. A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, A. Puerta-Notario, and J. Awrejcewicz, “A unifying statistical model for atmospheric optical scintillation,” in Numerical Simulations of Physical and Engineering Processes.   Intech Rijeka, Croatia, 2011, vol. 181, no. 8, pp. 181–205.
  14. H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, “Average capacity of optical wireless communication systems over atmospheric turbulence channels,” Journal of Lightwave Technology, vol. 27, no. 8, pp. 974–979, 2009.
  15. W. Gappmair, “Further results on the capacity of free-space optical channels in turbulent atmosphere,” IET communications, vol. 5, no. 9, pp. 1262–1267, 2011.
  16. A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of free-space optical intensity channels,” IEEE Transactions on Information Theory, vol. 55, no. 10, pp. 4449–4461, 2009.
  17. S. M. Moser, “Capacity results of an optical intensity channel with input-dependent Gaussian noise,” IEEE Transactions on Information Theory, vol. 58, no. 1, pp. 207–223, 2012.
  18. I. S. Ansari, M.-S. Alouini, and J. Cheng, “Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors,” IEEE Trans. Wirel. Commun., vol. 14, no. 8, pp. 4248–4264, 2015.
  19. S. Bloom et al., “The physics of free-space optics,” AirFiber Inc. White Paper, pp. 1–22, 2002.
  20. A. A. Farid and S. Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” Journal of Lightwave Technology, vol. 25, no. 7, pp. 1702–1710, 2007.
  21. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 19, no. 9, pp. 1794–1802, Sept. 2002.
  22. M. Miao, X.-y. Chen, R. Yin, and J. Yuan, “New results for the pointing errors model in two asymptotic cases,” IEEE Photonics Journal, vol. 15, no. 3, pp. 1–7, 2023.
  23. K. Kikuchi, “Fundamentals of coherent optical fiber communications,” Journal of Lightwave Technology, vol. 34, no. 1, pp. 157–179, 2015.
  24. A. Chaaban, Z. Rezki, and M.-S. Alouini, “On the capacity of intensity-modulation direct-detection Gaussian optical wireless communication channels: A tutorial,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 455–491, 2021.
  25. I. S. Ansari, F. Yilmaz, and M.-S. Alouini, “Performance analysis of FSO links over unified gamma-gamma turbulence channels,” in IEEE 81st Vehicular Technology Conference (VTC Spring), 2015, pp. 1–5.
  26. I. E. Lee, Z. Ghassemlooy, W. P. Ng, M.-A. Khalighi, and S.-K. Liaw, “Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors,” Applied Optics, vol. 55, no. 1, pp. 1–9, 2016.
  27. X. Tang, Z. Ghassemlooy, W. O. Popoola, and C. G. Lee, “Coherent polarization shift keying modulated free space optical links over a gamma-gamma turbulence channel,” American Journal of Engineering and Applied Sciences, vol. 4, no. 4, pp. 520–530, 2011.
  28. K. Singh, “On the capacity of low-rank dyadic fading channels in the Low-SNR regime,” Available: https://arxiv.org/abs/2308.05078, 2023.
  29. Wolfram Research, Inc., “The Wolfram Functions site,” Available: https://functions.wolfram.com/07.34.21.0002.01, [Accessed 29-May-2023].

Summary

We haven't generated a summary for this paper yet.