Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Soft Covering and Decoupling with Relative Entropy Criterion (2402.11112v1)

Published 16 Feb 2024 in cs.IT, math.IT, and quant-ph

Abstract: We propose quantum soft covering problems for fully quantum channels and classical-quantum (CQ) channels using relative entropy as a criterion of operator closeness. We prove covering lemmas by deriving one-shot bounds on the rates in terms of smooth min-entropies and smooth max-divergences, respectively. In the asymptotic regime, we show that for quantum channels, the rate infimum defined as the logarithm of the minimum rank of the input state is the coherent information between the reference and output state; for CQ channels, the rate infimum defined as the logarithm of the minimum number of input codewords is the Helovo information between the input and output state. Furthermore, we present a one-shot quantum decoupling theorem with relative entropy criterion. Our results based on the relative-entropy criterion are tighter than the corresponding results based on the trace norm considered in the literature due to the Pinsker inequality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. A. Wyner, “The common information of two dependent random variables,” IEEE Transactions on Information Theory, vol. 21, no. 2, pp. 163–179, 1975.
  2. P. Cuff, “Distributed channel synthesis,” IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7071–7096, 2013.
  3. ——, “Soft covering with high probability,” in 2016 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2016, pp. 2963–2967.
  4. S. Yagli and P. Cuff, “Exact exponent for soft covering,” IEEE Transactions on Information Theory, vol. 65, no. 10, pp. 6234–6262, 2019.
  5. T. Han and S. Verdu, “Approximation theory of output statistics,” IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 752–772, 1993.
  6. J. Hou and G. Kramer, “Informational divergence approximations to product distributions,” in 2013 13th Canadian Workshop on Information Theory.   IEEE, 2013, pp. 76–81.
  7. A. Winter, ““extrinsic”and “intrinsic”data in quantum measurements: Asymptotic convex decomposition of positive operator valued measures,” Communications in mathematical physics, vol. 244, pp. 157–185, 2004.
  8. R. Ahlswede and A. Winter, “Strong converse for identification via quantum channels,” IEEE Transactions on Information Theory, vol. 48, no. 3, pp. 569–579, 2002.
  9. I. Devetak and A. Winter, “Classical data compression with quantum side information,” Physical Review A, vol. 68, no. 4, p. 042301, 2003.
  10. A. Winter, “Secret, public and quantum correlation cost of triples of random variables,” in Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.   IEEE, 2005, pp. 2270–2274.
  11. I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum states,” Proceedings of the Royal Society A: Mathematical, Physical and engineering sciences, vol. 461, no. 2053, pp. 207–235, 2005.
  12. N. Cai, A. Winter, and R. W. Yeung, “Quantum privacy and quantum wiretap channels,” problems of information transmission, vol. 40, pp. 318–336, 2004.
  13. C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter, “The quantum reverse shannon theorem and resource tradeoffs for simulating quantum channels,” IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2926–2959, 2014.
  14. Z. Luo and I. Devetak, “Channel simulation with quantum side information,” IEEE Transactions on Information Theory, vol. 55, no. 3, pp. 1331–1342, 2009.
  15. J. Radhakrishnan, P. Sen, and N. A. Warsi, “One-shot private classical capacity of quantum wiretap channel: Based on one-shot quantum covering lemma,” arXiv preprint arXiv:1703.01932, 2017.
  16. H.-C. Cheng and L. Gao, “Error exponent and strong converse for quantum soft covering,” in 2022 IEEE International Symposium on Information Theory (ISIT), 2022, pp. 1318–1323.
  17. Y.-C. Shen, L. Gao, and H.-C. Cheng, “Optimal second-order rates for quantum soft covering and privacy amplification,” IEEE Transactions on Information Theory, 2024.
  18. M. M. Wilde, “From classical to quantum shannon theory,” arXiv preprint arXiv:1106.1445, 2011.
  19. T. A. Atif, S. S. Pradhan, and A. Winter, “Quantum soft-covering lemma with applications to rate-distortion coding, resolvability and identification via quantum channels,” arXiv preprint arXiv:2306.12416, 2023.
  20. A. Winter and S. Massar, “Compression of quantum-measurement operations,” Physical Review A, vol. 64, no. 1, p. 012311, 2001.
  21. S. Massar and S. Popescu, “Amount of information obtained by a quantum measurement,” Physical Review A, vol. 61, no. 6, p. 062303, 2000.
  22. M. M. Wilde, P. Hayden, F. Buscemi, and M.-H. Hsieh, “The information-theoretic costs of simulating quantum measurements,” Journal of Physics A: Mathematical and Theoretical, vol. 45, no. 45, p. 453001, oct 2012. [Online]. Available: https://doi.org/10.1088%2F1751-8113%2F45%2F45%2F453001
  23. A. Anshu, R. Jain, and N. A. Warsi, “Convex-split and hypothesis testing approach to one-shot quantum measurement compression and randomness extraction,” IEEE Transactions on Information Theory, vol. 65, no. 9, pp. 5905–5924, 2019.
  24. I. Csiszár, “Axiomatic characterizations of information measures,” Entropy, vol. 10, no. 3, pp. 261–273, 2008.
  25. M. Hayashi, “General nonasymptotic and asymptotic formulas in channel resolvability and identification capacity and their application to the wiretap channel,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1562–1575, 2006.
  26. L. Yu and V. Y. F. Tan, “Rényi resolvability and its applications to the wiretap channel,” IEEE Transactions on Information Theory, vol. 65, no. 3, pp. 1862–1897, 2019.
  27. M. Hayashi and R. Matsumoto, “Secure multiplex coding with dependent and non-uniform multiple messages,” IEEE Transactions on Information Theory, vol. 62, no. 5, pp. 2355–2409, 2016.
  28. M. Bastani Parizi, E. Telatar, and N. Merhav, “Exact random coding secrecy exponents for the wiretap channel,” IEEE Transactions on Information Theory, vol. 63, no. 1, pp. 509–531, 2017.
  29. M. Hayashi, “Quantum wiretap channel with non-uniform random number and its exponent and equivocation rate of leaked information,” IEEE Transactions on Information Theory, vol. 61, no. 10, pp. 5595–5622, 2015.
  30. F. Dupuis, M. Berta, J. Wullschleger, and R. Renner, “One-shot decoupling,” Communications in Mathematical Physics, vol. 328, pp. 251–284, 2014.
  31. F. Dupuis, “The decoupling approach to quantum information theory,” arXiv preprint arXiv:1004.1641, 2010.
  32. J. Preskill, “Quantum information chapter 10. quantum shannon theory,” Institute for Quantum Information and Matter California Institute of Technology, 2016.
  33. M. Tomamichel, R. Colbeck, and R. Renner, “Duality between smooth min- and max-entropies,” IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4674–4681, 2010.
  34. S. Khatri and M. M. Wilde, “Principles of quantum communication theory: A modern approach,” arXiv preprint arXiv:2011.04672, 2020.
  35. M. Tomamichel and M. Hayashi, “A hierarchy of information quantities for finite block length analysis of quantum tasks,” IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7693–7710, 2013.
  36. M. M. Wilde, “Position-based coding and convex splitting for private communication over quantum channels,” Quantum Information Processing, vol. 16, no. 10, p. 264, 2017.
  37. R. Renner, “Security of quantum key distribution,” International Journal of Quantum Information, vol. 6, no. 01, pp. 1–127, 2008.
  38. M. Hayashi and M. Tomamichel, “Correlation detection and an operational interpretation of the rényi mutual information,” Journal of Mathematical Physics, vol. 57, no. 10, 2016.
  39. M. Tomamichel, M. Berta, and M. Hayashi, “Relating different quantum generalizations of the conditional rényi entropy,” Journal of Mathematical Physics, vol. 55, no. 8, 2014.
  40. L. Zhang, “Matrix integrals over unitary groups: An application of schur-weyl duality,” arXiv preprint arXiv:1408.3782, 2014.
  41. E. Carlen, “Trace inequalities and quantum entropy: an introductory course,” Entropy and the quantum, vol. 529, pp. 73–140, 2010.
  42. S. Roch, “Modern discrete probability: An essential toolkit. chapter 4,” 2015.
  43. R. Van Handel, “Probability in high dimension,” Lecture Notes (Princeton University), 2014.
  44. K. M. Audenaert and J. Eisert, “Continuity bounds on the quantum relative entropy,” Journal of mathematical physics, vol. 46, no. 10, 2005.
Citations (1)

Summary

We haven't generated a summary for this paper yet.