Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a sharper phase-field method: a hybrid diffuse-semisharp approach for microstructure evolution problems (2402.10906v2)

Published 8 Jan 2024 in math.NA, cs.CE, and cs.NA

Abstract: A new approach is developed for computational modelling of microstructure evolution problems. The approach combines the phase-field method with the recently-developed laminated element technique (LET) which is a simple and efficient method to model weak discontinuities using nonconforming finite-element meshes. The essence of LET is in treating the elements that are cut by an interface as simple laminates of the two phases, and this idea is here extended to propagating interfaces so that the volume fraction of the phases and the lamination orientation vary accordingly. In the proposed LET-PF approach, the phase-field variable (order parameter), which is governed by an evolution equation of the Ginzburg-Landau type, plays the role of a level-set function that implicitly defines the position of the (sharp) interface. The mechanical equilibrium subproblem is then solved using the semisharp LET technique. Performance of LET-PF is illustrated by numerical examples. In particular, it is shown that, for the problems studied, LET-PF exhibits higher accuracy than the conventional phase-field method so that, for instance, qualitatively correct results can be obtained using a significantly coarser mesh, and thus at a lower computational cost.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. L.-Q. Chen. Phase-field models for microstructure evolution. Annual Review of Materials Research, 32(1):113–140, 2002. doi: 10.1146/annurev.matsci.32.112001.132041.
  2. I. Steinbach. Phase-field models in materials science. Modelling and Simulation in Materials Science and Engineering, 17(7):073001, 2009. doi: 10.1088/0965-0393/17/7/073001.
  3. N. Provatas and K. Elder. Phase-Field Methods in Materials Science and Engineering. Wiley, 2010. doi: 10.1002/9783527631520.
  4. Y. Wang and J. Li. Phase field modeling of defects and deformation. Acta Materialia, 58(4):1212–1235, 2010. doi: 10.1016/j.actamat.2009.10.041.
  5. Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges. Progress in Materials Science, 123:100810, 2022. doi: 10.1016/j.pmatsci.2021.100810.
  6. Mathematical modeling of iron and steel making processes. recent advances in the phase-field model for solidification. ISIJ International, 41(10):1076–1082, 2001. doi: 10.2355/isijinternational.41.1076.
  7. A nonlocal diffuse interface model for microstructure evolution of tin–lead solder. Journal of the Mechanics and Physics of Solids, 52(8):1763–1792, 2004. doi: 10.1016/j.jmps.2004.02.002.
  8. L. Guin and D. M. Kochmann. A phase-field model for ferroelectrics with general kinetics, part i: Model formulation. Journal of the Mechanics and Physics of Solids, 176:105301, 2023. doi: 10.1016/j.jmps.2023.105301.
  9. Y. Wang and A. Khachaturyan. Three-dimensional field model and computer modeling of martensitic transformations. Acta Materialia, 45(2):759–773, 1997. doi: 10.1016/s1359-6454(96)00180-2.
  10. Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite↔↔\leftrightarrow↔martensite. Phys. Rev. B, 66:134206, 2002. doi: 10.1103/PhysRevB.66.134206.
  11. Phase field simulation on the cyclic degeneration of one-way shape memory effect of NiTi shape memory alloy single crystal. International Journal of Mechanical Sciences, 168:105303, 2020. doi: 10.1016/j.ijmecsci.2019.105303.
  12. Phase-field modeling of multivariant martensitic transformation at finite-strain: Computational aspects and large-scale finite-element simulations. Computer Methods in Applied Mechanics and Engineering, 377:113705, 2021. doi: 10.1016/j.cma.2021.113705.
  13. J. Clayton and J. Knap. A phase field model of deformation twinning: Nonlinear theory and numerical simulations. Physica D: Nonlinear Phenomena, 240(9-10):841–858, 2011. doi: 10.1016/j.physd.2010.12.012.
  14. An integrated crystal plasticity–phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials. International Journal of Plasticity, 106:203–227, 2018. doi: 10.1016/j.ijplas.2018.03.009.
  15. Deformation twinning as a displacive transformation: Finite-strain phase-field model of coupled twinning and crystal plasticity. Journal of the Mechanics and Physics of Solids, 163:104855, 2022. doi: 10.1016/j.jmps.2022.104855.
  16. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 48(4):797–826, 2000. doi: 10.1016/s0022-5096(99)00028-9.
  17. A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computational Mechanics, 55(2):383–405, 2014. doi: 10.1007/s00466-014-1109-y.
  18. A phase field formulation for dissolution-driven stress corrosion cracking. Journal of the Mechanics and Physics of Solids, 147:104254, 2021. doi: 10.1016/j.jmps.2020.104254.
  19. Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface approach. Journal of the Mechanics and Physics of Solids, 95:284–307, 2016. doi: 10.1016/j.jmps.2016.04.013.
  20. H. K. Yeddu. Phase-field modeling of austenite grain size effect on martensitic transformation in stainless steels. Computational Materials Science, 154:75–83, 2018. doi: 10.1016/j.commatsci.2018.07.040.
  21. M. Rezaee-Hajidehi and S. Stupkiewicz. Phase-field modeling of multivariant martensitic microstructures and size effects in nano-indentation. Mechanics of Materials, 141:103267, 2020. doi: 10.1016/j.mechmat.2019.103267.
  22. Sharp phase field method. Physical Review Letters, 121(2), 2018. doi: 10.1103/physrevlett.121.025501.
  23. S-PFM model for ideal grain growth. Acta Materialia, 201:147–157, 2020. doi: 10.1016/j.actamat.2020.09.073.
  24. Frictionless motion of diffuse interfaces by sharp phase-field modeling. Crystals, 12(10):1496, 2022. doi: 10.3390/cryst12101496.
  25. M. Fleck and F. Schleifer. Sharp phase-field modeling of isotropic solidification with a super efficient spatial resolution. Engineering with Computers, 39(3):1699–1709, 2022. doi: 10.1007/s00366-022-01729-z.
  26. Lamination-based efficient treatment of weak discontinuities for non-conforming finite element meshes. Computers & Structures, 291:107209, 2024. doi: 10.1016/j.compstruc.2023.107209.
  27. L. Gélébart and F. Ouaki. Filtering material properties to improve FFT-based methods for numerical homogenization. Journal of Computational Physics, 294:90–95, 2015. doi: 10.1016/j.jcp.2015.03.048.
  28. Use of composite voxels in FFT-based homogenization. Computer Methods in Applied Mechanics and Engineering, 294:168–188, 2015. doi: 10.1016/j.cma.2015.06.003.
  29. The composite voxel technique for inelastic problems. Computer Methods in Applied Mechanics and Engineering, 322:396–418, 2017. doi: 10.1016/j.cma.2017.04.025.
  30. C. Mareau and C. Robert. Different composite voxel methods for the numerical homogenization of heterogeneous inelastic materials with FFT-based techniques. Mechanics of Materials, 105:157–165, 2017. doi: 10.1016/j.mechmat.2016.12.002.
  31. FFT-based homogenization at finite strains using composite boxels (ComBo). Computational Mechanics, 2022. doi: 10.1007/s00466-022-02232-4.
  32. Evaluation of interfacial excess contributions in different phase-field models for elastically inhomogeneous systems. Modelling and Simulation in Materials Science and Engineering, 21(5):055018, 2013. doi: 10.1088/0965-0393/21/5/055018.
  33. A novel homogenization method for phase field approaches based on partial rank-one relaxation. Journal of the Mechanics and Physics of Solids, 68:251–266, 2014. doi: 10.1016/j.jmps.2014.04.002.
  34. Phase-field elasticity model based on mechanical jump conditions. Computational Mechanics, 55(5):887–901, 2015. doi: 10.1007/s00466-015-1141-6.
  35. A. Bartels and J. Mosler. Efficient variational constitutive updates for Allen–Cahn-type phase field theory coupled to continuum mechanics. Computer Methods in Applied Mechanics and Engineering, 317:55–83, 2017. doi: 10.1016/j.cma.2016.11.024.
  36. J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematics (No. 3). Cambridge University Press, Cambridge, England, 2nd edition, 1999.
  37. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1):131–150, 1999. doi: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j.
  38. Modeling holes and inclusions by level sets in the extended finite-element method. Computer Methods in Applied Mechanics and Engineering, 190(46-47):6183–6200, 2001. doi: 10.1016/s0045-7825(01)00215-8.
  39. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 192(28-30):3163–3177, 2003. doi: 10.1016/s0045-7825(03)00346-3.
  40. A hybrid extended finite element/level set method for modeling phase transformations. International Journal for Numerical Methods in Engineering, 54(8):1209–1233, 2002. doi: 10.1002/nme.468.
  41. Diffusional evolution of precipitates in elastic media using the extended finite element and the level set methods. Journal of Computational Physics, 230(4):1249–1264, 2011. doi: 10.1016/j.jcp.2010.11.002.
  42. A sharp-interface model of the diffusive phase transformation in a nickel-based superalloy. Metals, 12(8):1261, 2022. doi: 10.3390/met12081261.
  43. M. E. Gurtin. Configurational Forces as Basic Concepts of Continuum Physics. Springer New York, 2000. doi: 10.1007/b97847.
  44. The eXtreme Mesh deformation approach (X-MESH) for the Stefan phase change model. Journal of Computational Physics, 477:111878, 2023. ISSN 0021-9991. doi: 10.1016/j.jcp.2022.111878.
  45. F. Hildebrand and C. Miehe. A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philosophical Magazine, 92(34):4250–4290, 2012. doi: 10.1080/14786435.2012.705039.
  46. O. Penrose and P. C. Fife. Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D: Nonlinear Phenomena, 43(1):44–62, 1990. doi: 10.1016/0167-2789(90)90015-h.
  47. J. Korelc. Automation of primal and sensitivity analysis of transient coupled problems. Computational Mechanics, 44(5):631–649, 2009. doi: 10.1007/s00466-009-0395-2.
  48. J. Korelc and P. Wriggers. Automation of Finite Element Methods. Springer International Publishing, 2016. doi: 10.1007/978-3-319-39005-5.
  49. S. Stupkiewicz and H. Petryk. Modelling of laminated microstructures in stress-induced martensitic transformations. Journal of the Mechanics and Physics of Solids, 50(11):2303–2331, 2002. doi: 10.1016/s0022-5096(02)00029-7.
  50. S. Stupkiewicz. Micromechanics of Contact and Interphase Layers. Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-49717-2.
Citations (3)

Summary

We haven't generated a summary for this paper yet.