Exploring Precision and Recall to assess the quality and diversity of LLMs (2402.10693v3)
Abstract: We introduce a novel evaluation framework for LLMs such as \textsc{Llama-2} and \textsc{Mistral}, focusing on importing Precision and Recall metrics from image generation to text generation. This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora. By conducting a comprehensive evaluation of state-of-the-art LLMs, the study reveals new insights into their performance on open-ended generation tasks, which are not adequately captured by traditional benchmarks. The findings highlight a trade-off between the quality and diversity of generated samples, particularly when models are fine-tuned on instruction dataset or with human feedback. This work extends the toolkit for distribution-based NLP evaluation, offering insights into the practical capabilities and challenges that current LLMs face in generating diverse and high-quality text. We release our code and data.
- Florian Le Bronnec (4 papers)
- Alexandre Verine (6 papers)
- Benjamin Negrevergne (20 papers)
- Yann Chevaleyre (28 papers)
- Alexandre Allauzen (26 papers)