Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Preference Optimization for Sample Efficient RLHF (2402.10500v2)

Published 16 Feb 2024 in cs.LG, cs.AI, and cs.CL

Abstract: Reinforcement Learning from Human Feedback (RLHF) is pivotal in aligning LLMs with human preferences. Although aligned generative models have shown remarkable abilities in various tasks, their reliance on high-quality human preference data creates a costly bottleneck in the practical application of RLHF. One primary reason is that current methods rely on uniformly picking prompt-generation pairs from a dataset of prompt-generations, to collect human feedback, resulting in sub-optimal alignment under a constrained budget, which highlights the criticality of adaptive strategies in efficient alignment. Recent works [Mehta et al., 2023, Muldrew et al., 2024] have tried to address this problem by designing various heuristics based on generation uncertainty. However, either the assumptions in [Mehta et al., 2023] are restrictive, or [Muldrew et al., 2024] do not provide any rigorous theoretical guarantee. To address these, we reformulate RLHF within contextual preference bandit framework, treating prompts as contexts, and develop an active-learning algorithm, $\textit{Active Preference Optimization}$ ($\texttt{APO}$), which enhances model alignment by querying preference data from the most important samples, achieving superior performance for small sample budget. We analyze the theoretical performance guarantees of $\texttt{APO}$ under the BTL preference model showing that the suboptimality gap of the policy learned via $\texttt{APO}$ scales as $O(1/\sqrt{T})$ for a budget of $T$. We also show that collecting preference data by choosing prompts randomly leads to a policy that suffers a constant sub-optimality. We perform detailed experimental evaluations on practical preference datasets to validate $\texttt{APO}$'s efficacy over the existing methods, establishing it as a sample-efficient and practical solution of alignment in a cost-effective and scalable manner.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Nirjhar Das (5 papers)
  2. Souradip Chakraborty (36 papers)
  3. Aldo Pacchiano (72 papers)
  4. Sayak Ray Chowdhury (23 papers)
Citations (7)