Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative AI in the Construction Industry: A State-of-the-art Analysis (2402.09939v1)

Published 15 Feb 2024 in cs.AI, cs.CL, cs.HC, cs.IR, and cs.LG

Abstract: The construction industry is a vital sector of the global economy, but it faces many productivity challenges in various processes, such as design, planning, procurement, inspection, and maintenance. Generative AI, which can create novel and realistic data or content, such as text, image, video, or code, based on some input or prior knowledge, offers innovative and disruptive solutions to address these challenges. However, there is a gap in the literature on the current state, opportunities, and challenges of generative AI in the construction industry. This study aims to fill this gap by providing a state-of-the-art analysis of generative AI in construction, with three objectives: (1) to review and categorize the existing and emerging generative AI opportunities and challenges in the construction industry; (2) to propose a framework for construction firms to build customized generative AI solutions using their own data, comprising steps such as data collection, dataset curation, training custom LLM, model evaluation, and deployment; and (3) to demonstrate the framework via a case study of developing a generative model for querying contract documents. The results show that retrieval augmented generation (RAG) improves the baseline LLM by 5.2, 9.4, and 4.8% in terms of quality, relevance, and reproducibility. This study provides academics and construction professionals with a comprehensive analysis and practical framework to guide the adoption of generative AI techniques to enhance productivity, quality, safety, and sustainability across the construction industry.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets