Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
40 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
26 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
73 tokens/sec
GPT OSS 120B via Groq Premium
485 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Parameterized quantum circuits as universal generative models for continuous multivariate distributions (2402.09848v2)

Published 15 Feb 2024 in quant-ph

Abstract: Parameterized quantum circuits have been extensively used as the basis for machine learning models in regression, classification, and generative tasks. For supervised learning, their expressivity has been thoroughly investigated and several universality properties have been proven. However, in the case of quantum generative modelling, much less is known, especially when the task is to model distributions over continuous variables. In this work, we elucidate expectation value sampling-based models. Such models output the expectation values of a set of fixed observables from a quantum circuit into which classical random data has been uploaded. We prove the universality of such variational quantum algorithms for the generation of multivariate distributions. We explore various architectures which allow universality and prove tight bounds connecting the minimal required qubit number, and the minimal required number of measurements needed. Our results may help guide the design of future quantum circuits in generative modelling tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.