Biased Estimator Channels for Classical Shadows (2402.09511v2)
Abstract: Extracting classical information from quantum systems is of fundamental importance, and classical shadows allow us to extract a large amount of information using relatively few measurements. Conventional shadow estimators are unbiased and thus approach the true mean in the infinite-sample limit. In this work, we consider a biased scheme, intentionally introducing a bias by rescaling the conventional classical shadows estimators can reduce the error in the finite-sample regime. The approach is straightforward to implement and requires no quantum resources. We analytically prove average case as well as worst- and best-case scenarios, and rigorously prove that it is, in principle, always worth biasing the estimators. We illustrate our approach in a quantum simulation task of a $12$-qubit spin-ring problem and demonstrate how estimating expected values of non-local perturbations can be significantly more efficient using our biased scheme.
- Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
- T. Sugiyama, P. S. Turner, and M. Murao, Precision-guaranteed quantum tomography, Phys. Rev. Lett. 111, 160406 (2013).
- H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nature Physics 16, 1050 (2020).
- H.-Y. Huang, R. Kueng, and J. Preskill, Efficient Estimation of Pauli Observables by Derandomization, Phys. Rev. Lett. 127, 030503 (2021), arXiv:2103.07510 [quant-ph] .
- A. Zhao, N. C. Rubin, and A. Miyake, Fermionic partial tomography via classical shadows, Phys. Rev. Lett. 127, 110504 (2021).
- C. Ferrie and R. Blume-Kohout, Maximum likelihood quantum state tomography is inadmissible, arXiv e-prints , arXiv:1808.01072 (2018), arXiv:1808.01072 [quant-ph] .
- A. Scott and C.-F. Wu, On the asymptotic distribution of ratio and regression estimators, Journal of the American Statistical Association 76, 98 (1981).
- B. Koczor and S. C. Benjamin, Quantum analytic descent, Physical Review Research 4, 023017 (2022a).
- B. Koczor and S. C. Benjamin, Quantum natural gradient generalized to noisy and nonunitary circuits, Physical Review A 106, 062416 (2022b).
- G. Boyd and B. Koczor, Training variational quantum circuits with covar: Covariance root finding with classical shadows, Phys. Rev. X 12, 041022 (2022).
- A. Zhao and A. Miyake, Group-theoretic error mitigation enabled by classical shadows and symmetries, arXiv preprint arXiv:2310.03071 (2023).
- T. Jones and S. Benjamin, Questlink—mathematica embiggened by a hardware-optimised quantum emulator*, Quantum Science and Technology 5, 034012 (2020).
- R. Meister, pyQuEST - A Python interface for the Quantum Exact Simulation Toolkit (2022).
- A. Richards, University of Oxford Advanced Research Computing (2015).
- A. Gresch and M. Kliesch, Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping, arXiv e-prints , arXiv:2301.03385 (2023), arXiv:2301.03385 [quant-ph] .