DoorINet: Door Heading Prediction through Inertial Deep Learning (2402.09427v2)
Abstract: Inertial sensors are widely used in a variety of applications. A common task is orientation estimation. To tackle such a task, attitude and heading reference system algorithms are applied. Relying on the gyroscope readings, the accelerometer measurements are used to update the attitude angles, and magnetometer measurements are utilized to update the heading angle. In indoor environments, magnetometers suffer from interference that degrades their performance resulting in poor heading angle estimation. Therefore, applications that estimate the heading angle of moving objects, such as walking pedestrians, closets, and refrigerators, are prone to error. To circumvent such situations, we propose DoorINet, an end-to-end deep-learning framework to calculate the heading angle from door-mounted, low-cost inertial sensors without using magnetometers. To evaluate our approach, we record a unique dataset containing 391 minutes of accelerometer and gyroscope measurements and corresponding ground-truth heading angle. We show that our proposed approach outperforms commonly used, model based approaches and data-driven methods.
- O. D. Lara and M. A. Labrador, “A survey on human activity recognition using wearable sensors,” IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1192–1209, 2013.
- L. Pei, R. Guinness, R. Chen, J. Liu, H. Kuusniemi, Y. Chen, L. Chen, and J. Kaistinen, “Human behavior cognition using smartphone sensors,” Sensors, vol. 13, no. 2, pp. 1402–1424, 2013. [Online]. Available: https://www.mdpi.com/1424-8220/13/2/1402
- M. Abdel-Basset, H. Hawash, V. Chang, R. K. Chakrabortty, and M. Ryan, “Deep learning for heterogeneous human activity recognition in complex IoT applications,” IEEE Internet of Things Journal, vol. 9, no. 8, pp. 5653–5665, 2022.
- W. Zhuang, Y. Chen, J. Su, B. Wang, and C. Gao, “Design of human activity recognition algorithms based on a single wearable IMU sensor,” International Journal of Sensor Networks, vol. 30, no. 3, pp. 193–206, 2019. [Online]. Available: https://www.inderscienceonline.com/doi/abs/10.1504/IJSNET.2019.100218
- J. M. Santos-Gago, M. Ramos-Merino, S. Vallarades-Rodriguez, L. M. Álvarez Sabucedo, M. J. Fernández-Iglesias, and J. L. García-Soidán, “Innovative use of wrist-worn wearable devices in the sports domain: A systematic review,” Electronics, vol. 8, no. 11, 2019. [Online]. Available: https://www.mdpi.com/2079-9292/8/11/1257
- Y. Wang, M. Chen, X. Wang, R. H. M. Chan, and W. J. Li, “Iot for next-generation racket sports training,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4558–4566, 2018.
- M. Wu, M. Fan, Y. Hu, R. Wang, Y. Wang, Y. Li, S. Wu, and G. Xia, “A real-time tennis level evaluation and strokes classification system based on the internet of things,” Internet of Things, vol. 17, p. 100494, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2542660521001335
- I. Ghosh, S. Ramasamy Ramamurthy, A. Chakma, and N. Roy, “Decoach: Deep learning-based coaching for badminton player assessment,” Pervasive and Mobile Computing, vol. 83, p. 101608, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1574119222000475
- Y. A. Qadri, A. Nauman, Y. B. Zikria, A. V. Vasilakos, and S. W. Kim, “The future of healthcare internet of things: A survey of emerging technologies,” IEEE Communications Surveys &\&& Tutorials, vol. 22, pp. 1121–1167, 2020.
- I. Ahmad, Z. Asghar, T. Kumar, G. Li, A. Manzoor, K. Mikhaylov, S. Shah, M. Höyhtyä, J. Reponen, J. Huusko, and E. Harjula, “Emerging technologies for next generation remote health care and assisted living,” IEEE Access, 03 2022.
- B. M. Eskofier, S. I. Lee, M. Baron, A. Simon, C. F. Martindale, H. Gaßner, and J. Klucken, “An overview of smart shoes in the internet of health things: Gait and mobility assessment in health promotion and disease monitoring,” Applied Sciences, vol. 7, no. 10, 2017. [Online]. Available: https://www.mdpi.com/2076-3417/7/10/986
- Y. Zhuang, J. Yang, L. Qi, Y. Li, Y. Cao, and N. El-Sheimy, “A pervasive integration platform of low-cost MEMS sensors and wireless signals for indoor localization,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4616–4631, 2018.
- I. Klein and O. Asraf, “StepNet—deep learning approaches for step length estimation,” IEEE Access, vol. 8, pp. 85 706–85 713, 2020.
- C. Chen, P. Zhao, C. X. Lu, W. Wang, A. Markham, and N. Trigoni, “Deep-learning-based pedestrian inertial navigation: Methods, data set, and on-device inference,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4431–4441, 2020.
- P. P. Gaikwad, J. P. Gabhane, and S. S. Golait, “A survey based on smart homes system using internet-of-things,” in 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), 2015, pp. 0330–0335.
- M. Alaa, A. Zaidan, B. Zaidan, M. Talal, and M. Kiah, “A review of smart home applications based on internet of things,” Journal of Network and Computer Applications, vol. 97, pp. 48–65, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1084804517302801
- W. A. Jabbar, T. K. Kian, R. M. Ramli, S. N. Zubir, N. S. M. Zamrizaman, M. Balfaqih, V. Shepelev, and S. Alharbi, “Design and fabrication of smart home with internet of things enabled automation system,” IEEE Access, vol. 7, pp. 144 059–144 074, 2019.
- S. O. H. Madgwick, “AHRS algorithms and calibration solutions to facilitate new applications using low-cost MEMS,” Ph.D. dissertation, University of Bristol, 2014.
- R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary filters on the special orthogonal group,” IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1203–1218, 2008.
- A. Asgharpoor Golroudbari and M. H. Sabour, “Generalizable end-to-end deep learning frameworks for real-time attitude estimation using 6DoF inertial measurement units,” Measurement, vol. 217, p. 113105, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0263224123006693
- Y. Liu, W. Liang, and J. Cui, “Lgc-net: A lightweight gyroscope calibration network for efficient attitude estimation,” 2022.
- E. Vertzberger and I. Klein, “Attitude adaptive estimation with smartphone classification for pedestrian navigation,” IEEE Sensors Journal, vol. 21, no. 7, pp. 9341–9348, 2021.
- ——, “Adaptive attitude estimation using a hybrid model-learning approach,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–9, 2022.
- ——, “Attitude and heading adaptive estimation using a data driven approach,” in 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2021, pp. 1–6.
- S. O. H. Madgwick, “An efficient orientation filter for inertial and inertial/magnetic sensor arrays,” University of Bristol, Tech. Rep., 2010.
- S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of IMU and MARG orientation using a gradient descent algorithm,” in 2011 IEEE International Conference on Rehabilitation Robotics, 2011, pp. 1–7.
- M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,” Signal Processing, IEEE Transactions on, vol. 45, pp. 2673 – 2681, 12 1997.
- K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” 2014.
- F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain,” Psychological review, 1958.
- Memsense. MS-IMU3025 product specifications. Accessed on December 11 2023. [Online]. Available: https://www.memsense.com/assets/docs/uploads/ms-imu3025/doc00713-rev-k-ms-imu3025-psug.pdf?v=1702282519495
- Movella. Xsens DOT user manual. Accessed on December 11 2023. [Online]. Available: https://www.xsens.com/hubfs/Downloads/Manuals/Xsens%20DOT%20User%20Manual.pdf
- X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, Y. W. Teh and M. Titterington, Eds., vol. 9. Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15 May 2010, pp. 249–256. [Online]. Available: https://proceedings.mlr.press/v9/glorot10a.html
- F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” 2017.
- M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, and S.-M. Hu, “Visual attention network,” Computational Visual Media, vol. 9, no. 4, pp. 733–752, 2023.