Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Koopman Autoencoder for Predictive Covert Communication Against UAV Surveillance (2402.09426v1)

Published 23 Jan 2024 in eess.SP, cs.LG, cs.SY, and eess.SY

Abstract: Low Probability of Detection (LPD) communication aims to obscure the very presence of radio frequency (RF) signals, going beyond just hiding the content of the communication. However, the use of Unmanned Aerial Vehicles (UAVs) introduces a challenge, as UAVs can detect RF signals from the ground by hovering over specific areas of interest. With the growing utilization of UAVs in modern surveillance, there is a crucial need for a thorough understanding of their unknown nonlinear dynamic trajectories to effectively implement LPD communication. Unfortunately, this critical information is often not readily available, posing a significant hurdle in LPD communication. To address this issue, we consider a case-study for enabling terrestrial LPD communication in the presence of multiple UAVs that are engaged in surveillance. We introduce a novel framework that combines graph neural networks (GNN) with Koopman theory to predict the trajectories of multiple fixed-wing UAVs over an extended prediction horizon. Using the predicted UAV locations, we enable LPD communication in a terrestrial ad-hoc network by controlling nodes' transmit powers to keep the received power at UAVs' predicted locations minimized. Our extensive simulations validate the efficacy of the proposed framework in accurately predicting the trajectories of multiple UAVs, thereby effectively establishing LPD communication.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. H.-M. Wang, Y. Zhang, X. Zhang, and Z. Li, “Secrecy and covert communications against UAV surveillance via multi-hop networks,” IEEE Trans. Commun., vol. 68, no. 1, pp. 389–401, 2019.
  2. Y.-S. Shiu, S. Y. Chang, H.-C. Wu, S. C.-H. Huang, and H.-H. Chen, “Physical layer security in wireless networks: A tutorial,” IEEE Wireless Communications, vol. 18, no. 2, pp. 66–74, 2011.
  3. S. Yan, X. Zhou, J. Hu, and S. V. Hanly, “Low Probability of Detection Communication: Opportunities and Challenges,” IEEE Wireless Communications, vol. 26, no. 5, pp. 19–25, 2019.
  4. T. V. Sobers, B. A. Bash, S. Guha, D. Towsley, and D. Goeckel, “Covert communication in the presence of an uninformed jammer,” IEEE Trans. Wirel. Commun., vol. 16, no. 9, pp. 6193–6206, 2017.
  5. B. A. Bash, D. Goeckel, and D. Towsley, “Limits of reliable communication with low probability of detection on AWGN channels,” IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 1921–1930, 2013.
  6. P. Carmi, M. J. Katz, and J. S. Mitchell, “The Minimum-area Spanning Tree Problem,” Comput. Geom., vol. 35, no. 3, pp. 218–225, 2006.
  7. B. Campbell, A. Perry, R. Hunjet, G. Wang, and B. Northcote, “Minimising RF detectability for low probability of detection communication,” in 2018 Military Communications and Information Systems Conference (MilCIS), pp. 1–6, IEEE, 2018.
  8. D. A. Guimarães and A. S. da Cunha, “The minimum area spanning tree problem: formulations, benders decomposition and branch-and-cut algorithms,” Comput. Geom., vol. 97, p. 101771, 2021.
  9. S. Krishnan, J. Park, S. Sagar, G. Sherman, B. Campbell, and J. Choi, “Federated graph learning for low probability of detection in wireless ad-hoc networks,” in 2023 IEEE Statistical Signal Processing Workshop (SSP), pp. 66–70, 2023.
  10. X. Chen, M. Sheng, N. Zhao, W. Xu, and D. Niyato, “Uav-relayed covert communication towards a flying warden,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7659–7672, 2021.
  11. X. Shao, H. Liu, W. Zhang, J. Zhao, and Q. Zhang, “Path driven formation-containment control of multiple uavs: A path-following framework,” Aerospace Science and Technology, vol. 135, p. 108168, 2023.
  12. T. N. Kipf and M. Welling, “Semi-supervised Classification with Graph Convolutional Networks,” in International Conference on Learning Representations (ICLR), 2017.
  13. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Advances in neural information processing systems, vol. 30, 2017.
  14. B. O. Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proceedings of the National Academy of Sciences, vol. 17, no. 5, pp. 315–318, 1931.
  15. B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear embeddings of nonlinear dynamics,” Nature communications, vol. 9, no. 1, p. 4950, 2018.
  16. S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, “Modern Koopman theory for dynamical systems,” SIAM Review, vol. 64, no. 2, pp. 229–340, 2022.
  17. T. Z. Muslimov and R. A. Munasypov, “Consensus-based cooperative control of parallel fixed-wing UAV formations via adaptive backstepping,” Aerospace science and technology, vol. 109, p. 106416, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.