Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Epilepsy Seizure Detection and Prediction using an Approximate Spiking Convolutional Transformer (2402.09424v1)

Published 21 Jan 2024 in eess.SP, cs.CV, cs.LG, and cs.NE

Abstract: Epilepsy is a common disease of the nervous system. Timely prediction of seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients. This paper presents a neuromorphic Spiking Convolutional Transformer, named Spiking Conformer, to detect and predict epileptic seizure segments from scalped long-term electroencephalogram (EEG) recordings. We report evaluation results from the Spiking Conformer model using the Boston Children's Hospital-MIT (CHB-MIT) EEG dataset. By leveraging spike-based addition operations, the Spiking Conformer significantly reduces the classification computational cost compared to the non-spiking model. Additionally, we introduce an approximate spiking neuron layer to further reduce spike-triggered neuron updates by nearly 38% without sacrificing accuracy. Using raw EEG data as input, the proposed Spiking Conformer achieved an average sensitivity rate of 94.9% and a specificity rate of 99.3% for the seizure detection task, and 96.8%, 89.5% for the seizure prediction task, and needs >10x fewer operations compared to the non-spiking equivalent model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. A. Page, C. Shea, and T. Mohsenin, “Wearable seizure detection using convolutional neural networks with transfer learning,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp. 1086–1089.
  2. A. Muneeb and H. Kassiri, “Energy-efficient spiking-CNN-based cross-patient seizure detection,” in 2023 IEEE International Symposium on Circuits and Systems (ISCAS), 2023, pp. 1–5.
  3. O. Kaziha and T. Bonny, “A convolutional neural network for seizure detection,” in 2020 Advances in Science and Engineering Technology International Conferences (ASET), 2020, pp. 1–5.
  4. A. Baghdadi, R. Fourati, Y. Aribi, P. Siarry, and A. M. Alimi, “Robust feature learning method for epileptic seizures prediction based on long-term EEG signals,” in 2020 International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–7.
  5. C. Lammie, W. Xiang, and M. R. Azghadi, “Towards memristive deep learning systems for real-time mobile epileptic seizure prediction,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1–5.
  6. A. Bhattacharya, T. Baweja, and S. Karri, “Epileptic seizure prediction using deep transformer model,” International Journal of Neural Systems, vol. 32, no. 02, p. 2150058, 2022.
  7. S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016.
  8. Q. Chen, Y. Huang, R. Sun, W. Song, Z. Lu, Y. Fu, and L. Li, “An efficient accelerator for multiple convolutions from the sparsity perspective,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 6, pp. 1540–1544, 2020.
  9. C. Gao, T. Delbruck, and S.-C. Liu, “Spartus: A 9.4 top/s fpga-based lstm accelerator exploiting spatio-temporal sparsity,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 1, pp. 1098–1112, 2024.
  10. Q. Chen, C. Gao, and Y. Fu, “Cerebron: a reconfigurable architecture for spatiotemporal sparse spiking neural networks,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 10, pp. 1425–1437, 2022.
  11. K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784, pp. 607–617, 2019.
  12. D. Neil, M. Pfeiffer, and S.-C. Liu, “Learning to be efficient: Algorithms for training low-latency, low-compute deep spiking neural networks,” in Proceedings of the 31st annual ACM symposium on applied computing, 2016, pp. 293–298.
  13. Y. Yang, J. K. Eshraghian, N. D. Truong, A. Nikpour, and O. Kavehei, “Neuromorphic deep spiking neural networks for seizure detection,” Neuromorphic Computing and Engineering, vol. 3, no. 1, p. 014010, 2023.
  14. H. Shan, L. Feng, Y. Zhang, L. Yang, and Z. Zhu, “Compact seizure detection based on spiking neural network and support vector machine for efficient neuromorphic implementation,” Biomedical Signal Processing and Control, vol. 86, p. 105268, 2023.
  15. K. Burelo, G. Ramantani, G. Indiveri, and J. Sarnthein, “A neuromorphic spiking neural network detects epileptic high frequency oscillations in the scalp EEG,” Scientific Reports, vol. 12, no. 1, p. 1798, 2022.
  16. “CHB-MIT scalp EEG database,” 2010, [Online]. Available: http://www.physionet.org/pn6/chbmit/.
  17. Y. Song, Q. Zheng, B. Liu, and X. Gao, “EEG Conformer: Convolutional transformer for EEG decoding and visualization,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 710–719, 2023.
  18. Q. Chen, C. Sun, Z. Lu, and C. Gao, “Enabling energy-efficient inference for self-attention mechanisms in neural networks,” in 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS).   IEEE, 2022, pp. 25–28.
  19. Z. Zhou, Y. Zhu, C. He, Y. Wang, S. Yan, Y. Tian, and L. Yuan, “Spikformer: When spiking neural network meets transformer,” in The Eleventh International Conference on Learning Representations, 2023.
  20. W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier, D. Chen, L. Huang, H. Zhou, G. Li, and Y. Tian, “Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence,” Science Advances, vol. 9, no. 40, 2023.
  21. M. Zhou, C. Tian, R. Cao, B. Wang, Y. Niu, T. Hu, H. Guo, and J. Xiang, “Epileptic seizure detection based on eeg signals and cnn,” Frontiers in neuroinformatics, vol. 12, p. 95, 2018.
  22. M. Shen, P. Wen, B. Song, and Y. Li, “An EEG based real-time epilepsy seizure detection approach using discrete wavelet transform and machine learning methods,” Biomedical Signal Processing and Control, vol. 77, 2022.
  23. H. Khan, L. Marcuse, M. Fields, K. Swann, and B. Yener, “Focal onset seizure prediction using convolutional networks,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 9, pp. 2109–2118, 2018.
  24. Y. Zhang, Y. Guo, P. Yang, W. Chen, and B. Lo, “Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 2, pp. 465–474, 2020.
  25. B. Büyükçakır, F. Elmaz, and A. Y. Mutlu, “Hilbert vibration decomposition-based epileptic seizure prediction with neural network,” Computers in biology and medicine, vol. 119, p. 103665, 2020.
  26. F. Tian, J. Yang, S. Zhao, and M. Sawan, “A new neuromorphic computing approach for epileptic seizure prediction,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021.
  27. Y. Zhao, C. Li, X. Liu, R. Qian, R. Song, and X. Chen, “Patient-specific seizure prediction via adder network and supervised contrastive learning,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 1536–1547, 2022.
  28. X. Lu, A. Wen, L. Sun, H. Wang, Y. Guo, and Y. Ren, “An epileptic seizure prediction method based on CBAM-3D CNN-LSTM model,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 417–423, 2023.
Citations (5)

Summary

We haven't generated a summary for this paper yet.