Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learned Image Compression with Text Quality Enhancement (2402.08643v1)

Published 13 Feb 2024 in cs.CV and cs.LG

Abstract: Learned image compression has gained widespread popularity for their efficiency in achieving ultra-low bit-rates. Yet, images containing substantial textual content, particularly screen-content images (SCI), often suffers from text distortion at such compressed levels. To address this, we propose to minimize a novel text logit loss designed to quantify the disparity in text between the original and reconstructed images, thereby improving the perceptual quality of the reconstructed text. Through rigorous experimentation across diverse datasets and employing state-of-the-art algorithms, our findings reveal significant enhancements in the quality of reconstructed text upon integration of the proposed loss function with appropriate weighting. Notably, we achieve a Bjontegaard delta (BD) rate of -32.64% for Character Error Rate (CER) and -28.03% for Word Error Rate (WER) on average by applying the text logit loss for two screenshot datasets. Additionally, we present quantitative metrics tailored for evaluating text quality in image compression tasks. Our findings underscore the efficacy and potential applicability of our proposed text logit loss function across various text-aware image compression contexts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chih-Yu Lai (3 papers)
  2. Dung Tran (13 papers)
  3. Kazuhito Koishida (22 papers)