Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asynchronous Distributed Coordinated Hybrid Precoding in Multi-cell mmWave Wireless Networks (2402.08231v1)

Published 13 Feb 2024 in cs.IT, eess.SP, and math.IT

Abstract: Asynchronous distributed hybrid beamformers (ADBF) are conceived for minimizing the total transmit power subject to signal-to-interference-plus-noise ratio (SINR) constraints at the users. Our design requires only limited information exchange between the base stations (BSs) of the mmWave multi-cell coordinated (MCC) networks considered. To begin with, a semidefinite relaxation (SDR)-based fully-digital (FD) beamformer is designed for a centralized MCC system. Subsequently, a Bayesian learning (BL) technique is harnessed for decomposing the FD beamformer into its analog and baseband components and construct a hybrid transmit precoder (TPC). However, the centralized TPC design requires global channel state information (CSI), hence it results in a high signaling overhead. An alternating direction based method of multipliers (ADMM) technique is developed for a synchronous distributed beamformer (SDBF) design, which relies only on limited information exchange among the BSs, thus reducing the signaling overheads required by the centralized TPC design procedure. However, the SDBF design is challenging, since it requires the updates from the BSs to be strictly synchronized. As a remedy, an ADBF framework is developed that mitigates the inter-cell interference (ICI) and also control the asynchrony in the system. Furthermore, the above ADBF framework is also extended to the robust ADBF (R-ADBF) algorithm that incorporates the CSI uncertainty into the design procedure for minimizing the the worst-case transmit power. Our simulation results illustrate both the enhanced performance and the improved convergence properties of the ADMM-based ADBF and R-ADBF schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. H. Shokri-Ghadikolaei, C. Fischione, G. Fodor, P. Popovski, and M. Zorzi, “Millimeter wave cellular networks: A MAC layer perspective,” IEEE Transactions on Communications, vol. 63, no. 10, pp. 3437–3458, 2015.
  2. T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,” IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029–3056, 2015.
  3. A. Alkhateeb, G. Leus, and R. W. Heath, “Limited feedback hybrid precoding for multi-user millimeter wave systems,” IEEE Transactions on Wireless Communications, vol. 14, no. 11, pp. 6481–6494, 2015.
  4. S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges,” EURASIP Journal on Wireless Communications and Networking, vol. 2007, pp. 1–10, 2006.
  5. J. G. Andrews, T. Bai, M. N. Kulkarni, A. Alkhateeb, A. K. Gupta, and R. W. Heath, “Modeling and analyzing millimeter wave cellular systems,” IEEE Transactions on Communications, vol. 65, no. 1, pp. 403–430, 2016.
  6. L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in massive multiuser MIMO systems,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 653–656, 2014.
  7. A.-A. A. Boulogeorgos and A. Alexiou, “Coverage analysis of reconfigurable intelligent surface assisted THz wireless systems,” IEEE Open Journal of Vehicular Technology, vol. 2, pp. 94–110, 2021.
  8. X. Guo, Y. Chen, and Y. Wang, “Compressed channel estimation for near-field XL-MIMO using triple parametric decomposition,” IEEE Transactions on Vehicular Technology, 2023.
  9. K. Satyanarayana, M. El-Hajjar, P.-H. Kuo, A. Mourad, and L. Hanzo, “Hybrid beamforming design for full-duplex millimeter wave communication,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1394–1404, 2018.
  10. Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Communications Magazine, vol. 49, no. 6, pp. 101–107, 2011.
  11. F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 501–513, 2016.
  12. M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1201–1221, 2017.
  13. J. Singh, S. Srivastava, S. P. Yadav, A. K. Jagannatham, and L. Hanzo, “Energy efficiency optimization in reconfigurable intelligent surface aided hybrid multiuser mmWave MIMO systems,” IEEE Open Journal of Vehicular Technology, 2023.
  14. T. Bai and R. W. Heath, “Coverage and rate analysis for millimeter-wave cellular networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 2, pp. 1100–1114, 2014.
  15. J. N. Murdock and T. S. Rappaport, “Consumption factor and power-efficiency factor: A theory for evaluating the energy efficiency of cascaded communication systems,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 2, pp. 221–236, 2013.
  16. S. A. Jafar, G. J. Foschini, and A. J. Goldsmith, “Phantomnet: Exploring optimal multicellular multiple antenna systems,” EURASIP Journal on Advances in Signal Processing, vol. 2004, no. 5, pp. 1–14, 2004.
  17. P. Marsch and G. Fettweis, “On multicell cooperative transmission in backhaul-constrained cellular systems,” Annals of telecommunications-annales des télécommunications, vol. 63, no. 5, pp. 253–269, 2008.
  18. C. T. K. Ng and H. Huang, “Linear precoding in cooperative MIMO cellular networks with limited coordination clusters,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 9, pp. 1446–1454, 2010.
  19. R. Zhang and L. Hanzo, “Cooperative downlink multicell preprocessing relying on reduced-rate back-haul data exchange,” IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 539–545, 2010.
  20. Z. Xiang, M. Tao, and X. Wang, “Coordinated multicast beamforming in multicell networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 1, pp. 12–21, 2012.
  21. S. He, Y. Huang, L. Yang, and B. Ottersten, “Coordinated multicell multiuser precoding for maximizing weighted sum energy efficiency,” IEEE Transactions on Signal Processing, vol. 62, no. 3, pp. 741–751, 2014.
  22. S. Lakshminarayana, M. Assaad, and M. Debbah, “Coordinated multicell beamforming for massive MIMO: A random matrix approach,” IEEE Transactions on Information Theory, vol. 61, no. 6, pp. 3387–3412, 2015.
  23. X. Xie, H. Yang, and A. V. Vasilakos, “Robust transceiver design based on interference alignment for multi-user multi-cell MIMO networks with channel uncertainty,” IEEE Access, vol. 5, pp. 5121–5134, 2017.
  24. O. Dhif-Allah, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Distributed robust power minimization for the downlink of multi-cloud radio access networks,” IEEE Transactions on Green Communications and Networking, vol. 2, no. 2, pp. 327–335, 2018.
  25. W.-Y. Chen, B.-S. Chen, and W.-T. Chen, “Multiobjective beamforming power control for robust SINR target tracking and power efficiency in multicell MU-MIMO wireless system,” IEEE Transactions on Vehicular Technology, vol. 69, no. 6, pp. 6200–6214, 2020.
  26. Y. Chen, Y. Wang, and L. Jiao, “Robust transmission for reconfigurable intelligent surface aided millimeter wave vehicular communications with statistical CSI,” IEEE Transactions on Wireless Communications, vol. 21, no. 2, pp. 928–944, 2021.
  27. Y. Chen, Y. Wang, and Z. Wang, “Reconfigurable intelligent surface aided high-mobility millimeter wave communications with dynamic dual-structured sparsity,” IEEE Transactions on Wireless Communications, 2022.
  28. W. Xu, J. Liu, S. Jin, and X. Dong, “Spectral and energy efficiency of multi-pair massive MIMO relay network with hybrid processing,” IEEE Transactions on Communications, vol. 65, no. 9, pp. 3794–3809, 2017.
  29. A. Michaloliakos, W.-C. Ao, and K. Psounis, “Joint user-beam selection for hybrid beamforming in asynchronously coordinated multi-cell networks,” in 2016 Information Theory and Applications Workshop (ITA).   IEEE, 2016, pp. 1–10.
  30. S. Sun, T. S. Rappaport, M. Shafi, and H. Tataria, “Analytical framework of hybrid beamforming in multi-cell millimeter-wave systems,” IEEE Transactions on Wireless Communications, vol. 17, no. 11, pp. 7528–7543, 2018.
  31. D. Castanheira, P. Lopes, A. Silva, and A. Gameiro, “Hybrid beamforming designs for massive MIMO millimeter-wave heterogeneous systems,” IEEE Access, vol. 5, pp. 21 806–21 817, 2017.
  32. D. Kumar, J. Kaleva, and A. Tölli, “Blockage-aware reliable mmWave access via coordinated multi-point connectivity,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4238–4252, 2021.
  33. L. Bai, T. Li, Q. Yu, J. Choi, and W. Zhang, “Cooperative multiuser beamforming in mmWave distributed antenna systems,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12 394–12 397, 2018.
  34. M.-M. Zhao, Y. Cai, M.-J. Zhao, Y. Xu, and L. Hanzo, “Robust joint hybrid analog-digital transceiver design for full-duplex mmWave multicell systems,” IEEE Transactions on Communications, vol. 68, no. 8, pp. 4788–4802, 2020.
  35. M. Jafri, A. Anand, S. Srivastava, A. K. Jagannatham, and L. Hanzo, “Robust distributed hybrid beamforming in coordinated multi-user multi-cell mmWave MIMO systems relying on imperfect CSI,” IEEE Transactions on Communications, vol. 70, no. 12, pp. 8123–8137, 2022.
  36. M. Jafri, S. Srivastava, N. K. Venkategowda, A. K. Jagannatham, and L. Hanzo, “Cooperative hybrid transmit beamforming in cell-free mmWave MIMO networks,” IEEE Transactions on Vehicular Technology, 2023.
  37. Z. Sha, S. Chen, and Z. Wang, “Near interference-free space-time user scheduling for mmwave cellular network,” IEEE Transactions on Wireless Communications, vol. 21, no. 8, pp. 6372–6386, 2022.
  38. Z. Sha, Y. Ming, C. Sun, and Z. Wang, “Versatile resource management for millimeter-wave cellular network: Near interference-free scheduling methodology,” IEEE Transactions on Vehicular Technology, 2023.
  39. D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,” IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2153–2164, 2004.
  40. Z.-Q. Luo, T.-H. Chang, D. Palomar, and Y. Eldar, “SDP relaxation of homogeneous quadratic optimization: approximation,” Convex Optimization in Signal Processing and Communications, p. 117, 2010.
  41. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” 2014.
  42. R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 436–453, 2016.
  43. M. R. Hestenes, “Multiplier and gradient methods,” Journal of Optimization Theory and Applications, vol. 4, no. 5, pp. 303–320, 1969.
  44. X. Zhang, M. Burger, and S. Osher, “A unified primal-dual algorithm framework based on Bregman iteration,” Journal of Scientific Computing, vol. 46, pp. 20–46, 2011.
  45. S. Yoon and A. Jameson, “Lower-upper symmetric-gauss-seidel method for the euler and navier-stokes equations,” AIAA journal, vol. 26, no. 9, pp. 1025–1026, 1988.
  46. W. Jiang, A. Grammenos, E. Kalyvianaki, and T. Charalambous, “An asynchronous approximate distributed alternating direction method of multipliers in digraphs,” in 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 3406–3413.
  47. J. Zhou and Y. Lei, “Asynchronous group-based ADMM algorithm under efficient communication structure,” in 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), 2018, pp. 135–140.

Summary

We haven't generated a summary for this paper yet.