Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Subsystem surface and compass code sensitivities to non-identical infidelity distributions on heavy-hex lattice (2402.08203v1)

Published 13 Feb 2024 in quant-ph

Abstract: Logical qubits encoded into a quantum code exhibit improved error rates when the physical error rates are sufficiently low, below the pseudothreshold. Logical error rates and pseudothresholds can be estimated for specific circuits and noise models, and these estimates provide approximate goals for qubit performance. However, estimates often assume uniform error rates, while real devices have static and/or dynamic distributions of non-identical error rates and may exhibit outliers. These distributions make it more challenging to evaluate, compare, and rank the expected performance of quantum processors. We numerically investigate how the logical error rate depends on parameters of the noise distribution for the subsystem surface code and the compass code on a subdivided hexagonal lattice. Three notable observations are found: (1) the average logical error rate depends on the average of the physical qubit infidelity distribution without sensitivity to higher moments (e.g., variance or outliers) for a wide parameter range; (2) the logical error rate saturates as errors increase at one or a few "bad" locations; and (3) a decoder that is aware of location specific error rates modestly improves the logical error rate. We discuss the implications of these results in the context of several different practical sources of outliers and non-uniform qubit error rates.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker,  and Matthias Troyer, “Elucidating reaction mechanisms on quantum computers,” Proceedings of the National Academy of Sciences 114, 7555–7560.
  2. Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross,  and Yuan Su, “Toward the first quantum simulation with quantum speedup,” Proceedings of the National Academy of Sciences 115, 9456–9461.
  3. Sergey Bravyi, Oliver Dial, Jay M. Gambetta, Dario Gil,  and Zaira Nazario, “The future of quantum computing with superconducting qubits,” Journal of Applied Physics 132, 160902.
  4. Eric Dennis, Alexei Kitaev, Andrew Landahl,  and John Preskill, “Topological quantum memory,” Journal of Mathematical Physics 43, 4452–4505.
  5. Austin G. Fowler, Matteo Mariantoni, John M. Martinis,  and Andrew N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86, 032324.
  6. Antonio deMarti iOlius, Josu Etxezarreta Martinez, Patricio Fuentes, Pedro M. Crespo,  and Javier Garcia-Frias, “Performance of surface codes in realistic quantum hardware,” Physical Review A 106, 062428.
  7. Jared B. Hertzberg, Eric J. Zhang, Sami Rosenblatt, Easwar Magesan, John A. Smolin, Jeng-Bang Yau, Vivekananda P. Adiga, Martin Sandberg, Markus Brink, Jerry M. Chow,  and Jason S. Orcutt, “Laser-annealing josephson junctions for yielding scaled-up superconducting quantum processors,” npj Quantum Information 7.
  8. Eric J. Zhang, Srikanth Srinivasan, Neereja Sundaresan, Daniela F. Bogorin, Yves Martin, Jared B. Hertzberg, John Timmerwilke, Emily J. Pritchett, Jeng-Bang Yau, Cindy Wang, William Landers, Eric P. Lewandowski, Adinath Narasgond, Sami Rosenblatt, George A. Keefe, Isaac Lauer, Mary Beth Rothwell, Douglas T. McClure, Oliver E. Dial, Jason S. Orcutt, Markus Brink,  and Jerry M. Chow, “High-performance superconducting quantum processors via laser annealing of transmon qubits,” Science Advances 8 (2022).
  9. Michael Hanks, William J. Munro,  and Kae Nemoto, “Decoding quantum error correction codes with local variation,” IEEE Transactions on Quantum Engineering 1, 1–8.
  10. BD Clader, Colin J Trout, Jeff P Barnes, Kevin Schultz, Gregory Quiroz,  and Paraj Titum, “Impact of correlations and heavy tails on quantum error correction,” Physical Review A 103, 052428.
  11. Christoph Berke, Evangelos Varvelis, Simon Trebst, Alexander Altland,  and David P. DiVincenzo, “Transmon platform for quantum computing challenged by chaotic fluctuations,” Nature Communications 13.
  12. Armands Strikis, Simon C. Benjamin,  and Benjamin J. Brown, “Quantum computing is scalable on a planar array of qubits with fabrication defects,” Phys. Rev. Appl. 19, 064081 (2023).
  13. Shota Nagayama, Austin G Fowler, Dominic Horsman, Simon J Devitt,  and Rodney Van Meter, “Surface code error correction on a defective lattice,” New Journal of Physics 19, 023050.
  14. Austin G. Fowler and Craig Gidney, “Low overhead quantum computation using lattice surgery,” arXiv:1808.06709 [quant-ph] .
  15. James M. Auger, “Fault-tolerance thresholds for the surface code with fabrication errors,” Physical Review A 96.
  16. M. Li, D. Miller, M. Newman, Y. Wu,  and K. Brown, “2-d compass codes,” Phys. Rev. X 9 (2019).
  17. C. Chamberland, G. Zhu, T. Yoder, J. Hertzberg,  and A. W. Cross, “Topological and subsystem codes on low-degree graphs with flag qubits,” Phys. Rev. X 10 (2020).
  18. P. V. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett, R. Barends, K. Arya, B. Chiaro, Yu Chen, A. Dunsworth, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff, T. Huang, E. Jeffrey, Erik Lucero, J. Y. Mutus, O. Naaman, C. Neill, C. Quintana, P. Roushan, Daniel Sank, A. Vainsencher, J. Wenner, T. C. White, S. Boixo, R. Babbush, V. N. Smelyanskiy, H. Neven,  and John M. Martinis, “Fluctuations of energy-relaxation times in superconducting qubits,” Phys. Rev. Lett. 121, 090502.
  19. M. Carroll, S. Rosenblatt, P. Jurcevic, I. Lauer,  and A. Kandala, “Dynamics of superconducting qubit relaxation times,” npj Quantum Information 8, 132.
  20. Sergey Bravyi, Guillaume Duclos-Cianci, David Poulin,  and Martin Suchara, “Subsystem surface codes with three-qubit check operators,” Quantum Information & Computation 13, 963–985 (2013).
  21. D. Poulin, “Stabilizer formalism for operator quantum error correction,” Phys. Rev. Lett. 95 (2005).
  22. Neereja Sundaresan, Theodore J. Yoder, Youngseok Kim, Muyuan Li, Edward H. Chen, Grace Harper, Ted Thorbeck, Andrew W. Cross, Antonio D. Córcoles,  and Maika Takita, “Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders,” Nature Communications 14 (2023).
  23. Oscar Higgott and Nikolas P. Breuckmann, “Subsystem codes with high thresholds by gauge fixing and reduced qubit overhead,” Phys. Rev. X 11, 031039 (2021).
  24. N. Brown, M. Newman,  and K. Brown, “Handling leakage with subsystem codes,” New Journal of Physics 21 (2019).
  25. Matthew B. Hastings and Jeongwan Haah, “Dynamically Generated Logical Qubits,” Quantum 5, 564 (2021).
  26. Markus S. Kesselring, Julio C. Magdalena de la Fuente, Felix Thomsen, Jens Eisert, Stephen D. Bartlett,  and Benjamin J. Brown, “Anyon condensation and the color code,”  (2022), arXiv:2212.00042 [quant-ph] .
  27. James R Wootton, “Hexagonal matching codes with two-body measurements,” Journal of Physics A: Mathematical and Theoretical 55, 295302 (2022).
  28. Milan Liepelt, Tommaso Peduzzi,  and James R. Wootton, “Enhanced repetition codes for the cross-platform comparison of progress towards fault-tolerance,”  (2023), arXiv:2308.08909 [quant-ph] .
  29. Adam Paetznick, Christina Knapp, Nicolas Delfosse, Bela Bauer, Jeongwan Haah, Matthew B. Hastings,  and Marcus P. da Silva, “Performance of planar floquet codes with majorana-based qubits,” PRX Quantum 4, 010310 (2023).
  30. Bence Hetényi and James R. Wootton, “Tailoring quantum error correction to spin qubits,”  (2023), arXiv:2306.17786 [quant-ph] .
  31. J. Stehlik, D. M. Zajac, D. L. Underwood, T. Phung, J. Blair, S. Carnevale, D. Klaus, G. A. Keefe, A. Carniol, M. Kumph, Matthias Steffen,  and O. E. Dial, “Tunable coupling architecture for fixed-frequency transmon superconducting qubits,” Phys. Rev. Lett. 127, 080505 (2021).
  32. Konstantin Tiurev, Peter-Jan H. S. Derks, Joschka Roffe, Jens Eisert,  and Jan-Michael Reiner, “Correcting non-independent and non-identically distributed errors with surface codes,” Quantum 7, 1123 (2023).
  33. Wayne M. Witzel, Malcolm S. Carroll, Lukasz Cywinski,  and S. Das Sarma, “Quantum decoherence of the central spin in a sparse system of dipolar coupled spins,” Phys. Rev. B 86, 035452.
  34. Clemens Müller, Jared H. Cole,  and Jürgen Lisenfeld, “Towards understanding two-level-systems in amorphous solids – insights from quantum circuits,” Rep. Prog. Phys. 82, 124501.
  35. S. E. de Graaf, L. Faoro, L. B. Ioffe, S. Mahashabde, J. J. Burnett, T. Lindström, S. E. Kubatkin, A. V. Danilov,  and A. Ya. Tzalenchuk, “Two-level systems in superconducting quantum devices due to trapped quasiparticles,” Science Advances 6.
  36. P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson,  and W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,” Applied Physics Reviews 6, 021318 (2019).
  37. Joshua Ramette, Josiah Sinclair, Nikolas P. Breuckmann,  and Vladan Vuletić, “Fault-tolerant connection of error-corrected qubits with noisy links,” arXiv:2302.01296 .
  38. Naomi H. Nickerson, Ying Li,  and Simon C. Benjamin, “Topological quantum computing with a very noisy network and local error rates approaching one percent,” Nat Commun 4, 1756.
  39. E. Paladino, Y. M. Galperin, G. Falci,  and B. L. Altshuler, “1/f noise: Implications for solid-state quantum information,” Rev. Mod. Phys. 86, 361–418.
  40. Oscar Higgott, “PyMatching: A fast implementation of the minimum-weight perfect matching decoder,” arXiv:2105.13082  (2021).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com