Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraints on Dark Matter-Dark Energy Scattering from ACT DR6 CMB Lensing (2402.08149v1)

Published 13 Feb 2024 in astro-ph.CO and gr-qc

Abstract: The predicted present-day amplitude of matter fluctuations based on cosmic microwave background (CMB) anisotropy data has sometimes been found discrepant with more direct measurements of late-time structure. This has motivated many extensions to the standard cosmological model, including kinetic interactions between dark matter and dark energy that introduce a drag force slowing the growth of structure at late times. Exploring this scenario, we develop a model for quasi-linear scales in the matter power spectrum by calculating the critical overdensity in the presence of this interaction and a varying dark energy equation of state. We explicitly avoid modeling or interpretation of data on non-linear scales in this model (such as use of $\Lambda$CDM-calibrated priors), which would require numerical simulations. We find that the presence of the drag force hinders halo formation, thus increasing the deviation from $\Lambda$CDM in the mildly non-linear regime. We use CMB lensing observations from the sixth data release of the Atacama Cosmology Telescope up to $L=1250$ (in combination with Planck, Sloan Digital Sky Survey, and 6dFGS data) to derive the strongest constraints to date on the amplitude of the drag term, finding the dimensionless interaction strength $\Gamma_\mathrm{DMDE}/(H_0\rho_\mathrm{c})<0.831\; (2.81)$ at the 68\% (95\%) confidence level. The inclusion of non-linear corrections improves our constraints by about 35\% compared to linear theory. Our results do not exclude the best-fit values of $\Gamma_\mathrm{DMDE}$ found in previous studies using information from galaxy weak lensing, though we find no statistical preference for the dark matter-dark energy kinetic interactions over $\Lambda$CDM. We implement our model in a publicly available fork of the Boltzmann code CLASS at https://github.com/fmccarthy/Class_DMDE.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Planck Collaboration, Planck 2018 results. VI. Cosmological parameters, Astronomy and Astrophysics 641, A6 (2020a), arXiv:1807.06209 [astro-ph.CO] .
  2. S. Aiola et al., The Atacama Cosmology Telescope: DR4 maps and cosmological parameters, Journal of Cosmology and Astroparticle Physics 2020, 047 (2020), arXiv:2007.07288 [astro-ph.CO] .
  3. H. Miyatake et al., Hyper Suprime-Cam Year 3 results: Cosmology from galaxy clustering and weak lensing with HSC and SDSS using the emulator based halo model, Phys. Rev. D 108, 123517 (2023), arXiv:2304.00704 [astro-ph.CO] .
  4. DES Collaboration, Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D 105, 023520 (2022), arXiv:2105.13549 [astro-ph.CO] .
  5. Dark Energy Survey and Kilo-Degree Survey Collaboration, DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys, The Open Journal of Astrophysics 6, 36 (2023), arXiv:2305.17173 [astro-ph.CO] .
  6. F. J. Qu et al., The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth, arXiv e-prints , arXiv:2304.05202 (2023), arXiv:2304.05202 [astro-ph.CO] .
  7. M. S. Madhavacheril et al., The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters, arXiv e-prints , arXiv:2304.05203 (2023), arXiv:2304.05203 [astro-ph.CO] .
  8. J. Carron, M. Mirmelstein, and A. Lewis, CMB lensing from Planck PR4 maps, Journal of Cosmology and Astroparticle Physics 2022, 039 (2022), arXiv:2206.07773 [astro-ph.CO] .
  9. Z. Pan et al., Measurement of gravitational lensing of the cosmic microwave background using SPT-3G 2018 data, Phys. Rev. D 108, 122005 (2023), arXiv:2308.11608 [astro-ph.CO] .
  10. F. Simpson, Scattering of dark matter and dark energy, Phys. Rev. D 82, 083505 (2010), arXiv:1007.1034 [astro-ph.CO] .
  11. S. Kumar and R. C. Nunes, Observational constraints on dark matter-dark energy scattering cross section, European Physical Journal C 77, 734 (2017), arXiv:1709.02384 [astro-ph.CO] .
  12. C.-P. Ma and E. Bertschinger, Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges, Astrophys. J.  455, 7 (1995), arXiv:astro-ph/9506072 [astro-ph] .
  13. A. Pourtsidou and T. Tram, Reconciling CMB and structure growth measurements with dark energy interactions, Phys. Rev. D 94, 043518 (2016), arXiv:1604.04222 [astro-ph.CO] .
  14. M. Baldi and F. Simpson, Simulating momentum exchange in the dark sector, Monthly Notices of the Royal Astronomical Society 449, 2239 (2015), arXiv:1412.1080 [astro-ph.CO] .
  15. M. Baldi and F. Simpson, Structure formation simulations with momentum exchange: alleviating tensions between high-redshift and low-redshift cosmological probes, Monthly Notices of the Royal Astronomical Society 465, 653 (2017), arXiv:1605.05623 [astro-ph.CO] .
  16. D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes, Journal of Cosmology and Astroparticle Physics 2011, 034 (2011), arXiv:1104.2933 [astro-ph.CO] .
  17. C. Heymans et al., CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments, Monthly Notices of the Royal Astronomical Society 432, 2433 (2013), arXiv:1303.1808 [astro-ph.CO] .
  18. M. Asgari, A. J. Mead, and C. Heymans, The halo model for cosmology: a pedagogical review, The Open Journal of Astrophysics 6, 39 (2023), arXiv:2303.08752 [astro-ph.CO] .
  19. D. Herrera, I. Waga, and S. E. Jorás, Calculation of the critical overdensity in the spherical-collapse approximation, Phys. Rev. D 95, 064029 (2017), arXiv:1703.05824 [astro-ph.CO] .
  20. A. Mead, HMcode: Halo-model matter power spectrum computation, Astrophysics Source Code Library, record ascl:1508.001 (2015), ascl:1508.001 .
  21. A. Lewis, A. Challinor, and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J.  538, 473 (2000), arXiv:astro-ph/9911177 [astro-ph] .
  22. S. Chabanier, M. Millea, and N. Palanque-Delabrouille, Matter power spectrum: from Ly α𝛼\alphaitalic_α forest to CMB scales, Monthly Notices of the Royal Astronomical Society 489, 2247 (2019), arXiv:1905.08103 [astro-ph.CO] .
  23. M. Viel, M. G. Haehnelt, and V. Springel, The effect of neutrinos on the matter distribution as probed by the intergalactic medium, Journal of Cosmology and Astroparticle Physics 2010, 015 (2010), arXiv:1003.2422 [astro-ph.CO] .
  24. S. Bird, M. Viel, and M. G. Haehnelt, Massive neutrinos and the non-linear matter power spectrum, Monthly Notices of the Royal Astronomical Society 420, 2551 (2012), arXiv:1109.4416 [astro-ph.CO] .
  25. S. M. L. Vogt, D. J. E. Marsh, and A. Laguë, Improved mixed dark matter halo model for ultralight axions, Phys. Rev. D 107, 063526 (2023), arXiv:2209.13445 [astro-ph.CO] .
  26. E. Massara, F. Villaescusa-Navarro, and M. Viel, The halo model in a massive neutrino cosmology, Journal of Cosmology and Astroparticle Physics 2014, 053 (2014), arXiv:1410.6813 [astro-ph.CO] .
  27. D. N. Limber, The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field., Astrophys. J.  117, 134 (1953).
  28. Planck Collaboration, Planck 2018 results. VIII. Gravitational lensing, Astronomy and Astrophysics 641, A8 (2020b), arXiv:1807.06210 [astro-ph.CO] .
  29. Planck Collaboration, Planck 2018 results. V. CMB power spectra and likelihoods, Astronomy and Astrophysics 641, A5 (2020c), arXiv:1907.12875 [astro-ph.CO] .
  30. G. Efstathiou and S. Gratton, A Detailed Description of the CamSpec Likelihood Pipeline and a Reanalysis of the Planck High Frequency Maps, arXiv e-prints , arXiv:1910.00483 (2019), arXiv:1910.00483 [astro-ph.CO] .
  31. S. Alam et al., The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Monthly Notices of the Royal Astronomical Society 470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO] .
  32. S. Alam et al., Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory, Phys. Rev. D 103, 083533 (2021), arXiv:2007.08991 [astro-ph.CO] .
  33. F. Beutler et al., The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant, Monthly Notices of the Royal Astronomical Society 416, 3017 (2011), arXiv:1106.3366 [astro-ph.CO] .
  34. J. Torrado and A. Lewis, Cobaya: code for Bayesian analysis of hierarchical physical models, Journal of Cosmology and Astroparticle Physics 2021, 057 (2021), arXiv:2005.05290 [astro-ph.IM] .
  35. A. Lewis, GetDist: a Python package for analysing Monte Carlo samples, arXiv e-prints , arXiv:1910.13970 (2019), arXiv:1910.13970 [astro-ph.IM] .
  36. J. A. Peacock and R. E. Smith, HALOFIT: Nonlinear distribution of cosmological mass and galaxies, Astrophysics Source Code Library, record ascl:1402.032 (2014), ascl:1402.032 .
  37. C. Loken et al., SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre, in Journal of Physics Conference Series, Journal of Physics Conference Series, Vol. 256 (2010) p. 012026.
  38. M. Ponce et al., Deploying a Top-100 Supercomputer for Large Parallel Workloads: the Niagara Supercomputer, arXiv e-prints , arXiv:1907.13600 (2019), arXiv:1907.13600 [cs.DC] .
  39. N.-M. Nguyen, D. Huterer, and Y. Wen, Evidence for suppression of structure growth in the concordance cosmological model, Phys. Rev. Lett.  131, 111001 (2023), arXiv:2302.01331 [astro-ph.CO] .

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com