Tuning proximity spin-orbit coupling in graphene/NbSe$_2$ heterostructures via twist angle (2402.07533v2)
Abstract: We investigate the effect of the twist angle on the proximity spin-orbit coupling (SOC) in graphene/NbSe$_2$ heterostructures from first principles. The low-energy Dirac bands of several different commensurate twisted supercells are fitted to a model Hamiltonian, allowing us to study the twist-angle dependency of the SOC in detail. We predict that the magnitude of the Rashba SOC can triple, when going from $\Theta=0\circ$ to $\Theta=30\circ$ twist angle. Furthermore, at a twist angle of $\Theta\approx23\circ$ the in-plane spin texture acquires a large radial component, corresponding to a Rashba angle of up to $\Phi=25\circ$. The twist-angle dependence of the extracted proximity SOC is explained by analyzing the orbital decomposition of the Dirac states to reveal with which NbSe$_2$ bands they hybridize strongest. Finally, we employ a Kubo formula to evaluate the efficiency of conventional and unconventional charge-to-spin conversion in the studied heterostructures.
- A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419 (2013).
- Dinh Loc Duong, Seok Joon Yun, and Young Hee Lee, “Van der Waals Layered Materials: Opportunities and Challenges,” ACS Nano 11, 11803 (2017).
- K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communications 146, 351–355 (2008).
- Xu Du, Ivan Skachko, Anthony Barker, and Eva Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nature Nanotechnology 3, 491–495 (2008).
- Simranjeet Singh, Jyoti Katoch, Jinsong Xu, Cheng Tan, Tiancong Zhu, Walid Amamou, James Hone, and Roland Kawakami, “Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers,” Appl. Phys. Lett. 109, 122411 (2016).
- Marc Drögeler, Christopher Franzen, Frank Volmer, Tobias Pohlmann, Luca Banszerus, Maik Wolter, Kenji Watanabe, Takashi Taniguchi, Christoph Stampfer, and Bernd Beschoten, “Spin Lifetimes Exceeding 12 ns in Graphene Nonlocal Spin Valve Devices,” Nano Lett. 16, 3533 (2016).
- Martin Gmitra and Jaroslav Fabian, “Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics,” Phys. Rev. B 92, 155403 (2015).
- Martin Gmitra, Denis Kochan, Petra Högl, and Jaroslav Fabian, “Trivial and inverted dirac bands and the emergence of quantum spin hall states in graphene on transition-metal dichalcogenides,” Phys. Rev. B 93, 155104 (2016).
- Zhe Wang, Dong-Keun Ki, Hua Chen, Helmuth Berger, Allan H MacDonald, and Alberto F Morpurgo, “Strong interface-induced spin-orbit interaction in graphene on WS2,” Nat. Commun. 6, 8339 (2015a).
- A Avsar, J Y Tan, T Taychatanapat, J Balakrishnan, G. K. W. Koon, Y Yeo, J Lahiri, A Carvalho, A S Rodin, E. C. T. O’Farrell, G Eda, A H Castro Neto, and B. Özyilmaz, “Spin–orbit proximity effect in graphene,” Nat. Commun. 5, 4875 (2014).
- Thomas Naimer, Klaus Zollner, Martin Gmitra, and Jaroslav Fabian, “Twist-angle dependent proximity induced spin-orbit coupling in graphene/transition metal dichalcogenide heterostructures,” Phys. Rev. B 104, 195156 (2021).
- Thomas Naimer and Jaroslav Fabian, “Twist-angle dependent proximity induced spin-orbit coupling in graphene/topological insulator heterostructures,” Phys. Rev. B 107, 195144 (2023).
- Klaus Zollner, Simão M. João, Branislav K. Nikolić, and Jaroslav Fabian, “Twist- and gate-tunable proximity spin-orbit coupling, spin relaxation anisotropy, and charge-to-spin conversion in heterostructures of graphene and transition metal dichalcogenides,” Phys. Rev. B 108, 235166 (2023).
- Bogdan Karpiak, Aron W Cummings, Klaus Zollner, Marc Vila, Dmitrii Khokhriakov, Anamul Md Hoque, André Dankert, Peter Svedlindh, Jaroslav Fabian, Stephan Roche, and Saroj P Dash, “Magnetic proximity in a van der waals heterostructure of magnetic insulator and graphene,” 2D Materials 7, 015026 (2019).
- Zhiyong Wang, Chi Tang, Raymond Sachs, Yafis Barlas, and Jing Shi, “Proximity-induced ferromagnetism in graphene revealed by the anomalous hall effect,” Phys. Rev. Lett. 114, 016603 (2015b).
- Peng Wei, Sunwoo Lee, Florian Lemaitre, Lucas Pinel, Davide Cutaia, Wujoon Cha, Ferhat Katmis, Yu Zhu, Donald Heiman, James Hone, Jagadeesh S. Moodera, and Ching-Tzu Chen, “Strong interfacial exchange field in the graphene/EuS heterostructure,” Nat. Mater. 15, 711 (2016).
- Jiayong Zhang, Bao Zhao, Yugui Yao, and Zhongqin Yang, “Robust quantum anomalous hall effect in graphene-based van der waals heterostructures,” Phys. Rev. B 92, 165418 (2015).
- Klaus Zollner, Martin Gmitra, and Jaroslav Fabian, “Electrically tunable exchange splitting in bilayer graphene on monolayer Cr 2 X 2 Te 6 with X = Ge, Si, and Sn,” New J. Phys. 20, 073007 (2018).
- Jiayong Zhang, Bao Zhao, Tong Zhou, Yang Xue, Chunlan Ma, and Zhongqin Yang, “Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures,” Phys. Rev. B 97, 085401 (2018).
- Yohanes S. Gani, Hadar Steinberg, and Enrico Rossi, “Superconductivity in twisted graphene nbse2subscriptnbse2{\mathrm{nbse}}_{2}roman_nbse start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT heterostructures,” Phys. Rev. B 99, 235404 (2019).
- Rai Moriya, Naoto Yabuki, and Tomoki Machida, “Superconducting proximity effect in a Nbse2/graphenesubscriptNbse2graphene\mathrm{Nb}{\mathrm{se}}_{2}/\text{graphene}roman_Nbse start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT / graphene van der waals junction,” Phys. Rev. B 101, 054503 (2020).
- Zhiming Zhang, Kenji Watanabe, Takashi Taniguchi, and Brian J. LeRoy, “Local characterization and engineering of proximitized correlated states in graphene/Nbse2graphenesubscriptNbse2\text{graphene}/\mathrm{Nb}{\mathrm{se}}_{2}graphene / roman_Nbse start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT vertical heterostructures,” Phys. Rev. B 102, 085429 (2020).
- Hong Wang, Xiangwei Huang, Junhao Lin, Jian Cui, Yu Chen, Chao Zhu, Fucai Liu, Qingsheng Zeng, Jiadong Zhou, Peng Yu, Xuewen Wang, Haiyong He, Siu Hon Tsang, Weibo Gao, Kazu Suenaga, Fengcai Ma, Changli Yang, Li Lu, Ting Yu, Edwin Hang Tong Teo, Guangtong Liu, and Zheng Liu, “High-quality monolayer superconductor nbse2 grown by chemical vapour deposition,” Nature Communications 8, 394 (2017).
- Xiaoxiang Xi, Zefang Wang, Weiwei Zhao, Ju-Hyun Park, Kam Tuen Law, Helmuth Berger, László Forró, Jie Shan, and Kin Fai Mak, “Ising pairing in superconducting nbse2 atomic layers,” Nature Physics 12, 139–143 (2016).
- E. Khestanova, J. Birkbeck, M. Zhu, Y. Cao, G. L. Yu, D. Ghazaryan, J. Yin, H. Berger, L. Forró, T. Taniguchi, K. Watanabe, R. V. Gorbachev, A. Mishchenko, A. K. Geim, and I. V. Grigorieva, “Unusual suppression of the superconducting energy gap and critical temperature in atomically thin nbse2,” Nano Letters 18, 2623–2629 (2018), pMID: 29529377, https://doi.org/10.1021/acs.nanolett.8b00443 .
- Yang Li and Mikito Koshino, “Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides,” Phys. Rev. B 99, 075438 (2019).
- Alessandro David, Péter Rakyta, Andor Kormányos, and Guido Burkard, “Induced spin-orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers: Twistronics meets spintronics,” Phys. Rev. B 100, 085412 (2019).
- Csaba G. Péterfalvi, Alessandro David, Péter Rakyta, Guido Burkard, and Andor Kormányos, “Quantum interference tuning of spin-orbit coupling in twisted van der waals trilayers,” Phys. Rev. Research 4, L022049 (2022).
- Seungjun Lee, D. J. P. de Sousa, Young-Kyun Kwon, Fernando de Juan, Zhendong Chi, Fèlix Casanova, and Tony Low, “Charge-to-spin conversion in twisted graphene/wse2graphenesubscriptwse2\mathrm{graphene}/{\mathrm{wse}}_{2}roman_graphene / roman_wse start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT heterostructures,” Phys. Rev. B 106, 165420 (2022).
- Haozhe Yang, Beatriz Martín-García, Jozef Kimák, Eva Schmoranzerová, Eoin Dolan, Zhendong Chi, Marco Gobbi, Petr Němec, Luis E. Hueso, and Fèlix Casanova, “Twist-angle tunable spin texture in wse2/graphene van der waals heterostructures,” (2023), arXiv:2312.10227 [cond-mat.mes-hall] .
- Josep Ingla-Aynés, Inge Groen, Franz Herling, Nerea Ontoso, C K Safeer, Fernando de Juan, Luis E Hueso, Marco Gobbi, and Fèlix Casanova, “Omnidirectional spin-to-charge conversion in graphene/NbSe2 van der waals heterostructures,” 2D Materials 9, 045001 (2022).
- Alessandro Veneri, David T. S. Perkins, Csaba G. Péterfalvi, and Aires Ferreira, “Twist angle controlled collinear edelstein effect in van der waals heterostructures,” Phys. Rev. B 106, L081406 (2022).
- Lorenzo Camosi, Josef Světlík, Marius V Costache, Williams Savero Torres, Iván Fernández Aguirre, Vera Marinova, Dimitre Dimitrov, Marin Gospodinov, Juan F Sierra, and Sergio O Valenzuela, “Resolving spin currents and spin densities generated by charge-spin interconversion in systems with reduced crystal symmetry,” 2D Materials 9, 035014 (2022).
- Nerea Ontoso, C. K. Safeer, Franz Herling, Josep Ingla-Aynés, Haozhe Yang, Zhendong Chi, Beatriz Martin-Garcia, Iñigo Robredo, Maia G. Vergniory, Fernando de Juan, M. Reyes Calvo, Luis E. Hueso, and Fèlix Casanova, “Unconventional charge-to-spin conversion in graphene/mote2subscriptmote2{\mathrm{mo}\mathrm{te}}_{2}roman_mote start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT van der waals heterostructures,” Phys. Rev. Appl. 19, 014053 (2023).
- Manuel Offidani, Mirco Milletari, Roberto Raimondi, and Aires Ferreira, “Optimal charge-to-spin conversion in graphene on transition-metal dichalcogenides,” Phys. Rev. Lett. 119, 196801 (2017).
- A. Dyrdał, J. Barnaś, and V. K. Dugaev, “Current-induced spin polarization in graphene due to rashba spin-orbit interaction,” Phys. Rev. B 89, 075422 (2014).
- V.M. Edelstein, “Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems,” Solid State Communications 73, 233–235 (1990).
- Junhua Zhang, C. Triola, and E. Rossi, “Proximity effect in graphene–topological-insulator heterostructures,” Phys. Rev. Lett. 112, 096802 (2014).
- Kenan Song, David Soriano, Aron W. Cummings, Roberto Robles, Pablo Ordejón, and Stephan Roche, “Spin Proximity Effects in Graphene/Topological Insulator Heterostructures,” Nano Lett. 18, 2033 (2018).
- Jonas Kiemle, Lukas Powalla, Katharina Polyudov, Lovish Gulati, Maanwinder Singh, Alexander W. Holleitner, Marko Burghard, and Christoph Kastl, “Gate-tunable helical currents in commensurate topological insulator/graphene heterostructures,” ACS Nano 16, 12338–12344 (2022), pMID: 35968692, https://doi.org/10.1021/acsnano.2c03370 .
- Jiangping Hu, Congjun Wu, and Xi Dai, “Proposed design of a josephson diode,” Phys. Rev. Lett. 99, 067004 (2007).
- C Baumgartner, L Fuchs, A Costa, Jordi Picó-Cortés, S Reinhardt, S Gronin, G C Gardner, T Lindemann, M J Manfra, P E Faria Junior, D Kochan, J Fabian, N Paradiso, and C Strunk, “Effect of rashba and dresselhaus spin–orbit coupling on supercurrent rectification and magnetochiral anisotropy of ballistic josephson junctions,” Journal of Physics: Condensed Matter 34, 154005 (2022a).
- Christian Baumgartner, Lorenz Fuchs, Andreas Costa, Simon Reinhardt, Sergei Gronin, Geoffrey C. Gardner, Tyler Lindemann, Michael J. Manfra, Paulo E. Faria Junior, Denis Kochan, Jaroslav Fabian, Nicola Paradiso, and Christoph Strunk, “Supercurrent rectification and magnetochiral effects in symmetric josephson junctions,” Nature Nanotechnology 17, 39–44 (2022b).
- Kun Jiang and Jiangping Hu, “Superconducting diode effects,” Nature Physics 18, 1145–1146 (2022).
- Andreas Costa, Jaroslav Fabian, and Denis Kochan, “Microscopic study of the josephson supercurrent diode effect in josephson junctions based on two-dimensional electron gas,” Phys. Rev. B 108, 054522 (2023).
- Yi Ding, Yanli Wang, Jun Ni, Lin Shi, Siqi Shi, and Weihua Tang, “First principles study of structural, vibrational and electronic properties of graphene-like mx2 (m=mo, nb, w, ta; x=s, se, te) monolayers,” Physica B: Condensed Matter 406, 2254–2260 (2011).
- Daniel S Koda, Friedhelm Bechstedt, Marcelo Marques, and Lara K Teles, “Coincidence lattices of 2d crystals: heterostructure predictions and applications,” The Journal of Physical Chemistry C 120, 10895–10908 (2016).
- Stephen Carr, Shiang Fang, and Efthimios Kaxiras, “Electronic-structure methods for twisted moiré layers,” Nature Reviews Materials 5, 748–763 (2020).
- Chen Si, Zhimei Sun, and Feng Liu, “Strain engineering of graphene: a review,” Nanoscale 8, 3207–3217 (2016).
- Seon-Myeong Choi, Seung-Hoon Jhi, and Young-Woo Son, “Effects of strain on electronic properties of graphene,” Phys. Rev. B 81, 081407 (2010).
- Gui Gui, Jin Li, and Jianxin Zhong, “Band structure engineering of graphene by strain: First-principles calculations,” Phys. Rev. B 78, 075435 (2008).
- D. Grassano, M. D’Alessandro, O. Pulci, S. G. Sharapov, V. P. Gusynin, and A. A. Varlamov, “Work function, deformation potential, and collapse of landau levels in strained graphene and silicene,” Phys. Rev. B 101, 245115 (2020).
- P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864 (1964).
- Paolo Giannozzi and et al., “Quantum espresso: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Cond. Mat. 21, 395502 (2009).
- G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758 (1999).
- John P. Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).
- Stefan Grimme, “Semiempirical gga-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787 (2006).
- Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” J. Chem. Phys. 132, 154104 (2010).
- Vincenzo Barone, Maurizio Casarin, Daniel Forrer, Michele Pavone, Mauro Sambi, and Andrea Vittadini, “Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases,” J. Comput. Chem. 30, 934 (2009).
- C. L. Kane and E. J. Mele, “Quantum Spin hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005).
- Miguel M. Ugeda, Aaron J. Bradley, Yi Zhang, Seita Onishi, Yi Chen, Wei Ruan, Claudia Ojeda-Aristizabal, Hyejin Ryu, Mark T. Edmonds, Hsin-Zon Tsai, Alexander Riss, Sung-Kwan Mo, Dunghai Lee, Alex Zettl, Zahid Hussain, Zhi-Xun Shen, and Michael F. Crommie, “Characterization of collective ground states in single-layer nbse2,” Nature Physics 12, 92–97 (2016).
- Xiaoxiang Xi, Liang Zhao, Zefang Wang, Helmuth Berger, László Forró, Jie Shan, and Kin Fai Mak, “Strongly enhanced charge-density-wave order in monolayer nbse2,” Nature Nanotechnology 10, 765–769 (2015).
- Chao-Sheng Lian, Chen Si, and Wenhui Duan, “Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional nbse2,” Nano Letters 18, 2924–2929 (2018).
- Paulo E Faria Junior, Thomas Naimer, Kathleen M McCreary, Berend T Jonker, Jonathan J Finley, Scott A Crooker, Jaroslav Fabian, and Andreas V Stier, “Proximity-enhanced valley zeeman splitting at the ws2/graphene interface,” 2D Materials 10, 034002 (2023).
- Mikito Koshino, “Interlayer interaction in general incommensurate atomic layers,” New Journal of Physics 17, 015014 (2015).
- Talieh S. Ghiasi, Josep Ingla-Aynés, Alexey A. Kaverzin, and Bart J. Van Wees, “Large Proximity-Induced Spin Lifetime Anisotropy in Transition-Metal Dichalcogenide/Graphene Heterostructures,” Nano Lett. 17, 7528 (2017).
- R. Kubo, “A general expression for the conductivity tensor,” Canadian Journal of Physics 34, 1274–1277 (1956), https://doi.org/10.1139/p56-140 .
- Ryogo Kubo, “Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems,” Journal of the Physical Society of Japan 12, 570–586 (1957), https://doi.org/10.1143/JPSJ.12.570 .
- L Smrcka and P Streda, “Transport coefficients in strong magnetic fields,” Journal of Physics C: Solid State Physics 10, 2153 (1977).
- A. Crépieux and P. Bruno, “Theory of the anomalous hall effect from the kubo formula and the dirac equation,” Phys. Rev. B 64, 014416 (2001).
- Varga Bonbien and Aurélien Manchon, “Symmetrized decomposition of the kubo-bastin formula,” Phys. Rev. B 102, 085113 (2020).
- Frank Freimuth, Stefan Blügel, and Yuriy Mokrousov, “Spin-orbit torques in co/pt(111) and mn/w(001) magnetic bilayers from first principles,” Phys. Rev. B 90, 174423 (2014).
- Jakub Železný, Yang Zhang, Claudia Felser, and Binghai Yan, “Spin-polarized current in noncollinear antiferromagnets,” Phys. Rev. Lett. 119, 187204 (2017).
- Bogdan Guster, Carmen Rubio-Verdú, Roberto Robles, Javier Zaldívar, Paul Dreher, Miguel Pruneda, José Ángel Silva-Guillén, Deung-Jang Choi, José I. Pascual, Miguel M. Ugeda, Pablo Ordejón, and Enric Canadell, “Coexistence of elastic modulations in the charge density wave state of 2h-nbse2,” Nano Letters 19, 3027–3032 (2019).