Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

X-LoRA: Mixture of Low-Rank Adapter Experts, a Flexible Framework for Large Language Models with Applications in Protein Mechanics and Molecular Design (2402.07148v2)

Published 11 Feb 2024 in cond-mat.soft, cond-mat.dis-nn, cs.AI, cs.CL, cs.LG, and q-bio.QM

Abstract: We report a mixture of expert strategy to create fine-tuned LLMs using a deep layer-wise token-level approach based on low-rank adaptation (LoRA). Starting with a set of pre-trained LoRA adapters, our gating strategy uses the hidden states to dynamically mix adapted layers, allowing the resulting X-LoRA model to draw upon different capabilities and create never-before-used deep layer-wise combinations to solve tasks. The design is inspired by the biological principles of universality and diversity, where neural network building blocks are reused in different hierarchical manifestations. Hence, the X-LoRA model can be easily implemented for any existing LLM without a need for modifications of the underlying structure. We develop a tailored X-LoRA model that offers scientific capabilities including forward/inverse analysis tasks and enhanced reasoning capability, focused on biomaterial analysis, protein mechanics and design. The impact of this work include access to readily expandable and adaptable models with strong domain knowledge and the capability to integrate across areas of knowledge. Featuring experts in biology, mathematics, reasoning, bio-inspired materials, mechanics and materials, chemistry, protein biophysics, mechanics and quantum-mechanics based molecular properties, we conduct a series of physics-focused case studies. We examine knowledge recall, protein mechanics forward/inverse tasks, protein design, adversarial agentic modeling including ontological knowledge graph construction, as well as molecular design. The model is capable not only of making quantitative predictions of nanomechanical properties of proteins or quantum mechanical molecular properties, but also reasons over the results and correctly predicts likely mechanisms that explain distinct molecular behaviors.

Citations (12)

Summary

We haven't generated a summary for this paper yet.