Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF (2402.06886v3)

Published 10 Feb 2024 in cs.LG, math.OC, and stat.ML

Abstract: Bilevel optimization has been recently applied to many machine learning tasks. However, their applications have been restricted to the supervised learning setting, where static objective functions with benign structures are considered. But bilevel problems such as incentive design, inverse reinforcement learning (RL), and RL from human feedback (RLHF) are often modeled as dynamic objective functions that go beyond the simple static objective structures, which pose significant challenges of using existing bilevel solutions. To tackle this new class of bilevel problems, we introduce the first principled algorithmic framework for solving bilevel RL problems through the lens of penalty formulation. We provide theoretical studies of the problem landscape and its penalty-based (policy) gradient algorithms. We demonstrate the effectiveness of our algorithms via simulations in the Stackelberg Markov game, RL from human feedback and incentive design.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com