Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discriminative Adversarial Unlearning (2402.06864v2)

Published 10 Feb 2024 in cs.LG and cs.AI

Abstract: We introduce a novel machine unlearning framework founded upon the established principles of the min-max optimization paradigm. We capitalize on the capabilities of strong Membership Inference Attacks (MIA) to facilitate the unlearning of specific samples from a trained model. We consider the scenario of two networks, the attacker $\mathbf{A}$ and the trained defender $\mathbf{D}$ pitted against each other in an adversarial objective, wherein the attacker aims at teasing out the information of the data to be unlearned in order to infer membership, and the defender unlearns to defend the network against the attack, whilst preserving its general performance. The algorithm can be trained end-to-end using backpropagation, following the well known iterative min-max approach in updating the attacker and the defender. We additionally incorporate a self-supervised objective effectively addressing the feature space discrepancies between the forget set and the validation set, enhancing unlearning performance. Our proposed algorithm closely approximates the ideal benchmark of retraining from scratch for both random sample forgetting and class-wise forgetting schemes on standard machine-unlearning datasets. Specifically, on the class unlearning scheme, the method demonstrates near-optimal performance and comprehensively overcomes known methods over the random sample forgetting scheme across all metrics and multiple network pruning strategies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets