Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Kalman Filter Based Framework for Monitoring the Performance of In-Hospital Mortality Prediction Models Over Time (2402.06812v1)

Published 9 Feb 2024 in cs.LG

Abstract: Unlike in a clinical trial, where researchers get to determine the least number of positive and negative samples required, or in a machine learning study where the size and the class distribution of the validation set is static and known, in a real-world scenario, there is little control over the size and distribution of incoming patients. As a result, when measured during different time periods, evaluation metrics like Area under the Receiver Operating Curve (AUCROC) and Area Under the Precision-Recall Curve(AUCPR) may not be directly comparable. Therefore, in this study, for binary classifiers running in a long time period, we proposed to adjust these performance metrics for sample size and class distribution, so that a fair comparison can be made between two time periods. Note that the number of samples and the class distribution, namely the ratio of positive samples, are two robustness factors which affect the variance of AUCROC. To better estimate the mean of performance metrics and understand the change of performance over time, we propose a Kalman filter based framework with extrapolated variance adjusted for the total number of samples and the number of positive samples during different time periods. The efficacy of this method is demonstrated first on a synthetic dataset and then retrospectively applied to a 2-days ahead in-hospital mortality prediction model for COVID-19 patients during 2021 and 2022. Further, we conclude that our prediction model is not significantly affected by the evolution of the disease, improved treatments and changes in hospital operational plans.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets