Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive multi-gradient methods for quasiconvex vector optimization and applications to multi-task learning (2402.06224v1)

Published 9 Feb 2024 in math.OC and cs.LG

Abstract: We present an adaptive step-size method, which does not include line-search techniques, for solving a wide class of nonconvex multiobjective programming problems on an unbounded constraint set. We also prove convergence of a general approach under modest assumptions. More specifically, the convexity criterion might not be satisfied by the objective function. Unlike descent line-search algorithms, it does not require an initial step-size to be determined by a previously determined Lipschitz constant. The process's primary characteristic is its gradual step-size reduction up until a predetermined condition is met. It can be specifically applied to offer an innovative multi-gradient projection method for unbounded constrained optimization issues. Preliminary findings from a few computational examples confirm the accuracy of the strategy. We apply the proposed technique to some multi-task learning experiments to show its efficacy for large-scale challenges.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com