Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing Consistent Force Output for Shape Memory Alloy Artificial Muscles in Soft Robots (2402.06201v1)

Published 9 Feb 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Soft robots have immense potential given their inherent safety and adaptability, but challenges in soft actuator forces and design constraints have limited scaling up soft robots to larger sizes. Electrothermal shape memory alloy (SMA) artificial muscles have the potential to create these large forces and high displacements, but consistently using these muscles under a well-defined model, in-situ in a soft robot, remains an open challenge. This article provides a system for maintaining the highest-possible consistent SMA forces, over long lifetimes, by combining a fatigue testing protocol with a supervisory control system for the muscles' internal temperature state. We propose a design of a soft limb with swap-able SMA muscles, and deploy the limb in a blocked-force test to quantify the relationship between the measured maximum force at different temperatures over different lifetimes. Then, by applying an invariance-based control system to maintain temperatures under our long-life limit, we demonstrate consistent high forces in a practical task over hundreds of cycles. The method we developed allows for practical implementation of SMAs in soft robots through characterizing and controlling their behavior in-situ, and provides a method to impose limits that maximize their consistent, repeatable behavior.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. C. Laschi, B. Mazzolai, and M. Cianchetti, “Soft robotics: Technologies and systems pushing the boundaries of robot abilities,” Science Robotics, vol. 1, p. eaah3690, Dec. 2016.
  2. C. Majidi, “Soft Robotics: A Perspective - Current Trends and Prospects for the Future,” Soft Robotics, vol. 1, pp. 5–11, Mar. 2014.
  3. S. Sanan, M. H. Ornstein, and C. G. Atkeson, “Physical human interaction for an inflatable manipulator,” in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 7401–7404, Aug. 2011. ISSN: 1558-4615.
  4. M. Takeichi, K. Suzumori, G. Endo, and H. Nabae, “Development of Giacometti Arm With Balloon Body,” IEEE Robotics and Automation Letters, vol. 2, pp. 951–957, Apr. 2017. Conference Name: IEEE Robotics and Automation Letters.
  5. M. Takeichi, K. Suzumori, G. Endo, and H. Nabae, “Development of a 20-m-long Giacometti arm with balloon body based on kinematic model with air resistance,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2710–2716, Sept. 2017. ISSN: 2153-0866.
  6. C. M. Best, J. P. Wilson, and M. D. Killpack, “Control of a pneumatically actuated, fully inflatable, fabric-based, humanoid robot,” in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 1133–1140, 2015.
  7. N. S. Usevitch, Z. M. Hammond, M. Schwager, A. M. Okamura, E. W. Hawkes, and S. Follmer, “An untethered isoperimetric soft robot,” Science Robotics, vol. 5, p. eaaz0492, Mar 2020.
  8. S. Li, S. A. Awale, K. E. Bacher, T. J. Buchner, C. Della Santina, R. J. Wood, and D. Rus, “Scaling Up Soft Robotics: A Meter-Scale, Modular, and Reconfigurable Soft Robotic System,” Soft Robotics, Mar. 2021. Publisher: Mary Ann Liebert, Inc., publishers.
  9. B. W. K. Ang and C.-H. Yeow, “Design and Modeling of a High Force Soft Actuator for Assisted Elbow Flexion,” IEEE Robotics and Automation Letters, vol. 5, pp. 3731–3736, Apr. 2020. Conference Name: IEEE Robotics and Automation Letters.
  10. X. Liu, Y. Zhao, D. Geng, S. Chen, X. Tan, and C. Cao, “Soft Humanoid Hands with Large Grasping Force Enabled by Flexible Hybrid Pneumatic Actuators,” Soft Robotics, vol. 8, pp. 175–185, Apr. 2021. Publisher: Mary Ann Liebert, Inc., publishers.
  11. S. I. Rich, R. J. Wood, and C. Majidi, “Untethered soft robotics,” Nature Electronics, vol. 1, p. 102–112, Feb 2018.
  12. M. Zakerzadeh, H. Salehi, and H. Sayyaadi, “Modeling of a Nonlinear Euler-Bernoulli Flexible Beam Actuated by Two Active Shape Memory Alloy Actuators,” Journal of Intelligent Material Systems and Structures, vol. 22, July 2011.
  13. J. Lee, M. Jin, and K. K. Ahn, “Precise tracking control of shape memory alloy actuator systems using hyperbolic tangential sliding mode control with time delay estimation,” Mechatronics, vol. 23, pp. 310–317, Apr. 2013.
  14. J. Z. Ge, L. Chang, and N. O. Pérez-Arancibia, “Preisach-model-based position control of a shape-memory alloy linear actuator in the presence of time-varying stress,” Mechatronics, vol. 73, p. 102452, Feb. 2021.
  15. H. N. Bhargaw, B. A. Botre, S. Singh, S. A. R. Hashmi, S. A. Akbar, and P. Sinha, “Performance analysis of constant current heated antagonistic shape memory alloy actuator using a differential resistance measurement technique,” Smart Materials and Structures, vol. 30, p. 125031, Nov. 2021. Publisher: IOP Publishing.
  16. A. P. Sabelhaus, R. K. Mehta, A. T. Wertz, and C. Majidi, “In-Situ Sensing and Dynamics Predictions for Electrothermally-Actuated Soft Robot Limbs,” Frontiers in Robotics and AI, vol. 9, 2022.
  17. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, “Structural and functional fatigue of NiTi shape memory alloys,” Materials Science and Engineering: A, vol. 378, pp. 24–33, July 2004.
  18. Y. She, C. Li, J. Cleary, and H.-J. Su, “Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors,” Journal of Mechanisms and Robotics, vol. 7, p. 021007, 05 2015.
  19. M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario, “Biomedical applications of soft robotics,” May 2018.
  20. A. Wertz, A. P. Sabelhaus, and C. Majidi, “Trajectory Optimization for Thermally-Actuated Soft Planar Robot Limbs,” in 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), pp. 439–446, Apr. 2022.
  21. Z. J. Patterson, A. P. Sabelhaus, K. Chin, T. Hellebrekers, and C. Majidi, “An Untethered Brittle Star-Inspired Soft Robot for Closed-Loop Underwater Locomotion,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8758–8764, Oct. 2020.
  22. A. Villanueva, C. Smith, and S. Priya, “A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators,” Bioinspiration & Biomimetics, vol. 6, p. 036004, Sept. 2011.
  23. J. Colorado, A. Barrientos, C. Rossi, and K. S. Breuer, “Biomechanics of smart wings in a bat robot: Morphing wings using SMA actuators,” Bioinspiration & Biomimetics, vol. 7, p. 036006, Sept. 2012.
  24. D. Shin, X. Yeh, and O. Khatib, “A new hybrid actuation scheme with artificial pneumatic muscles and a magnetic particle brake for safe human–robot collaboration,” The International Journal of Robotics Research, vol. 33, pp. 507–518, Apr. 2014. Publisher: SAGE Publications Ltd STM.
  25. A. Stilli, H. A. Wurdemann, and K. Althoefer, “A Novel Concept for Safe, Stiffness-Controllable Robot Links,” Soft Robotics, vol. 4, pp. 16–22, Mar. 2017. Publisher: Mary Ann Liebert, Inc., publishers.
  26. L. Balasubramanian, T. Wray, and D. D. Damian, “Fault Tolerant Control in Shape-Changing Internal Robots,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 5502–5508, May 2020. ISSN: 2577-087X.
  27. K. Kuribayashi, “Improvement of the Response of an SMA Actuator Using a Temperature Sensor,” The International Journal of Robotics Research, vol. 10, pp. 13–20, Feb. 1991.
  28. M. Liu, L. Hao, W. Zhang, Y. Chen, and J. Chen, “Reinforcement Learning Control of a Shape Memory Alloy-based Bionic Robotic Hand,” in 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 969–973, July 2019.
  29. Yee Harn Teh and R. Featherstone, “An Architecture for Fast and Accurate Control of Shape Memory Alloy Actuators,” The International Journal of Robotics Research, vol. 27, pp. 595–611, May 2008.
  30. H. Jin, E. Dong, G. Alici, S. Mao, X. Min, C. Liu, K. H. Low, and J. Yang, “A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires,” Bioinspiration & Biomimetics, vol. 11, p. 056012, Sept. 2016.
  31. A. Y. N. Sofla, D. M. Elzey, and H. N. G. Wadley, “Cyclic degradation of antagonistic shape memory actuated structures,” Smart Materials and Structures, vol. 17, p. 025014, Feb. 2008.
  32. J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Materials & Design (1980-2015), vol. 56, pp. 1078–1113, Apr. 2014.
  33. K. Chin, T. Hellebrekers, and C. Majidi, “Machine Learning for Soft Robotic Sensing and Control,” Advanced Intelligent Systems, vol. 2, no. 6, p. 1900171, 2020.
  34. A. P. Sabelhaus, Z. J. Patterson, A. T. Wertz, and C. Majidi, “Safe Supervisory Control of Soft Robot Actuators,” Aug. 2022. arXiv:2208.01547 [cs, eess].
  35. R. Jing, M. L. Anderson, M. Ianus-Valdivia, A. A. Ali, C. Majidi, and A. P. Sabelhaus, “Safe balancing control of a soft legged robot,” arXiv preprint arXiv:2209.13715, 2022.
  36. J. Ryu, S. Ahn, J.-s. Koh, K.-J. Cho, and M. Cho, “Modified brinson model as an equivalent one-dimensional constitutive equation of sma spring,” in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, vol. 7981, pp. 1113–1119, SPIE, 2011.
  37. L. Xu, A. Solomou, T. Baxevanis, and D. Lagoudas, “Finite strain constitutive modeling for shape memory alloys considering transformation-induced plasticity and two-way shape memory effect,” International Journal of Solids and Structures, vol. 221, pp. 42–59, 2021.
  38. A. Mohammadgholipour and A. M. Billah, “Mechanical properties and constitutive models of shape memory alloy for structural engineering: A review,” Journal of Intelligent Material Systems and Structures, p. 1045389X231185458, 2023.
  39. C. Cisse, W. Zaki, and T. B. Zineb, “A review of constitutive models and modeling techniques for shape memory alloys,” International Journal of Plasticity, vol. 76, pp. 244–284, 2016.
  40. D.-S. Copaci, D. Blanco, A. Martin-Clemente, and L. Moreno, “Flexible shape memory alloy actuators for soft robotics: Modelling and control,” International Journal of Advanced Robotic Systems, vol. 17, no. 1, p. 1729881419886747, 2020.
  41. J. Wang, Z. Moumni, W. Zhang, Y. Xu, and W. Zaki, “A 3d finite-strain-based constitutive model for shape memory alloys accounting for thermomechanical coupling and martensite reorientation,” Smart Materials and Structures, vol. 26, no. 6, p. 065006, 2017.
  42. B. He, X. Dong, R. Nie, Y. Wang, S. Ao, and G. Wang, “Comprehensive shape memory alloys constitutive models for engineering application,” Materials & Design, vol. 225, p. 111563, 2023.
  43. L. A. Woodworth and M. Kaliske, “A temperature dependent constitutive model for functional fatigue in shape memory alloys,” Mechanics of Materials, vol. 165, p. 104126, 2022.
  44. T. L. Buckner, M. C. Yuen, and R. Kramer-Bottiglio, “Shape Memory Silicone Using Phase-Changing Inclusions,” in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), pp. 259–265, May 2020.
  45. B. Mazzolai, A. Mondini, E. D. Dottore, L. Margheri, F. Carpi, K. Suzumori, M. Cianchetti, T. Speck, S. K. Smoukov, I. Burgert, T. Keplinger, G. D. F. Siqueira, F. Vanneste, O. Goury, C. Duriez, T. Nanayakkara, B. Vanderborght, J. Brancart, S. Terryn, S. I. Rich, R. Liu, K. Fukuda, T. Someya, M. Calisti, C. Laschi, W. Sun, G. Wang, L. Wen, R. Baines, S. K. Patiballa, R. Kramer-Bottiglio, D. Rus, P. Fischer, F. C. Simmel, and A. Lendlein, “Roadmap on soft robotics: multifunctionality, adaptability and growth without borders,” Multifunctional Materials, vol. 5, p. 032001, Aug. 2022. Publisher: IOP Publishing.
  46. R. Baines, S. K. Patiballa, J. Booth, L. Ramirez, T. Sipple, A. Garcia, F. Fish, and R. Kramer-Bottiglio, “Multi-environment robotic transitions through adaptive morphogenesis,” Nature, vol. 610, pp. 283–289, Oct. 2022. Number: 7931 Publisher: Nature Publishing Group.
  47. T. P. Chenal, J. C. Case, J. Paik, and R. K. Kramer, “Variable stiffness fabrics with embedded shape memory materials for wearable applications,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2827–2831, Sept. 2014. ISSN: 2153-0866.
  48. J. C. Pacheco Garcia, R. Jing, M. L. Anderson, M. Ianus-Valdivia, and A. P. Sabelhaus, “A comparison of mechanics simplifications in pose estimation for thermally-actuated soft robot limbs,” in Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers, 2023.
  49. Z. J. Patterson, A. P. Sabelhaus, and C. Majidi, “Robust Control of a Multi-Axis Shape Memory Alloy-Driven Soft Manipulator,” IEEE Robotics and Automation Letters, vol. 7, pp. 2210–2217, Apr. 2022.
  50. J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial detection,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4193–4198, Oct. 2016. ISSN: 2153-0866.
Citations (1)

Summary

We haven't generated a summary for this paper yet.