Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressing Deep Reinforcement Learning Networks with a Dynamic Structured Pruning Method for Autonomous Driving (2402.05146v1)

Published 7 Feb 2024 in cs.LG, cs.AI, and cs.RO

Abstract: Deep reinforcement learning (DRL) has shown remarkable success in complex autonomous driving scenarios. However, DRL models inevitably bring high memory consumption and computation, which hinders their wide deployment in resource-limited autonomous driving devices. Structured Pruning has been recognized as a useful method to compress and accelerate DRL models, but it is still challenging to estimate the contribution of a parameter (i.e., neuron) to DRL models. In this paper, we introduce a novel dynamic structured pruning approach that gradually removes a DRL model's unimportant neurons during the training stage. Our method consists of two steps, i.e. training DRL models with a group sparse regularizer and removing unimportant neurons with a dynamic pruning threshold. To efficiently train the DRL model with a small number of important neurons, we employ a neuron-importance group sparse regularizer. In contrast to conventional regularizers, this regularizer imposes a penalty on redundant groups of neurons that do not significantly influence the output of the DRL model. Furthermore, we design a novel structured pruning strategy to dynamically determine the pruning threshold and gradually remove unimportant neurons with a binary mask. Therefore, our method can remove not only redundant groups of neurons of the DRL model but also achieve high and robust performance. Experimental results show that the proposed method is competitive with existing DRL pruning methods on discrete control environments (i.e., CartPole-v1 and LunarLander-v2) and MuJoCo continuous environments (i.e., Hopper-v3 and Walker2D-v3). Specifically, our method effectively compresses $93\%$ neurons and $96\%$ weights of the DRL model in four challenging DRL environments with slight accuracy degradation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Wensheng Su (1 paper)
  2. Zhenni Li (1 paper)
  3. Minrui Xu (57 papers)
  4. Jiawen Kang (204 papers)
  5. Dusit Niyato (671 papers)
  6. Shengli Xie (36 papers)
Citations (3)
X Twitter Logo Streamline Icon: https://streamlinehq.com