Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CADReN: Contextual Anchor-Driven Relational Network for Controllable Cross-Graphs Node Importance Estimation (2402.05135v1)

Published 6 Feb 2024 in cs.AI, cs.CL, and cs.IR

Abstract: Node Importance Estimation (NIE) is crucial for integrating external information into LLMs through Retriever-Augmented Generation. Traditional methods, focusing on static, single-graph characteristics, lack adaptability to new graphs and user-specific requirements. CADReN, our proposed method, addresses these limitations by introducing a Contextual Anchor (CA) mechanism. This approach enables the network to assess node importance relative to the CA, considering both structural and semantic features within Knowledge Graphs (KGs). Extensive experiments show that CADReN achieves better performance in cross-graph NIE task, with zero-shot prediction ability. CADReN is also proven to match the performance of previous models on single-graph NIE task. Additionally, we introduce and opensource two new datasets, RIC200 and WK1K, specifically designed for cross-graph NIE research, providing a valuable resource for future developments in this domain.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com