Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Confidence Bounds for Stochastic Partial Monitoring (2402.05002v2)

Published 7 Feb 2024 in cs.LG

Abstract: The partial monitoring (PM) framework provides a theoretical formulation of sequential learning problems with incomplete feedback. On each round, a learning agent plays an action while the environment simultaneously chooses an outcome. The agent then observes a feedback signal that is only partially informative about the (unobserved) outcome. The agent leverages the received feedback signals to select actions that minimize the (unobserved) cumulative loss. In contextual PM, the outcomes depend on some side information that is observable by the agent before selecting the action on each round. In this paper, we consider the contextual and non-contextual PM settings with stochastic outcomes. We introduce a new class of PM strategies based on the randomization of deterministic confidence bounds. We also extend regret guarantees to settings where existing stochastic strategies are not applicable. Our experiments show that the proposed RandCBP and RandCBPsidestar strategies have favorable performance against state-of-the-art baselines in multiple PM games. To advocate for the adoption of the PM framework, we design a use case on the real-world problem of monitoring the error rate of any deployed classification system.

Citations (1)

Summary

We haven't generated a summary for this paper yet.