Reductive Quantum Phase Estimation (2402.04471v4)
Abstract: Estimating a quantum phase is a necessary task in a wide range of fields of quantum science. To accomplish this task, two well-known methods have been developed in distinct contexts, namely, Ramsey interferometry (RI) in atomic and molecular physics and quantum phase estimation (QPE) in quantum computing. We demonstrate that these canonical examples are instances of a larger class of phase estimation protocols, which we call reductive quantum phase estimation (RQPE) circuits. Here we present an explicit algorithm that allows one to create an RQPE circuit. This circuit distinguishes an arbitrary set of phases with a fewer number of qubits and unitary applications, thereby solving a general class of quantum hypothesis testing to which RI and QPE belong. We further demonstrate a trade-off between measurement precision and phase distinguishability, which allows one to tune the circuit to be optimal for a specific application.
- A. A. Michelson and E. W. Morley, On the relative motion of the earth and the luminiferous ether, American Journal of Science s3-34, 333–345 (1887).
- E. Jahrgang, Zeitschrift für Instrumentenkunde, Vol. 1881 (Springer, 1891).
- C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
- M. A. Taylor and W. P. Bowen, Quantum metrology and its application in biology, Physics Reports 615, 1 (2016), quantum metrology and its application in biology.
- M. A. Nielsen and I. L. Chuang, Phase estimation, in Quantum Computation and Quantum Information (Cambridge University Press, 2010) p. 221–226.
- A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009).
- P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th Annual Symposium on Foundations of Computer Science (1994) pp. 124–134.
- N. F. Ramsey, A molecular beam resonance method with separated oscillating fields, Phys. Rev. 78, 695 (1950).
- A. Y. Kitaev, Quantum measurements and the abelian stabilizer problem, Electron. Colloquium Comput. Complex. TR96 (1995).
- L. Pezzè and A. Smerzi, Quantum phase estimation algorithm with gaussian spin states, PRX Quantum 2, 040301 (2021).
- G. Spedalieri and S. L. Braunstein, Asymmetric quantum hypothesis testing with gaussian states, Phys. Rev. A 90, 052307 (2014).
- Z. M. Rossi and I. L. Chuang, Quantum hypothesis testing with group structure, Phys. Rev. A 104, 012425 (2021).
- M. Mosca and A. Ekert, The hidden subgroup problem and eigenvalue estimation on a quantum computer, in Quantum Computing and Quantum Communications, edited by C. P. Williams (Springer Berlin Heidelberg, Berlin, Heidelberg, 1999) pp. 174–188.
- M. J. Holland and K. Burnett, Interferometric detection of optical phase shifts at the heisenberg limit, Phys. Rev. Lett. 71, 1355 (1993).
- J. T. Reilly, Entropy Removal and Coherence with Lasers, Bachelor’s thesis, University of Colorado Boulder (2020).
- N. Wiebe and C. Granade, Efficient bayesian phase estimation, Phys. Rev. Lett. 117, 010503 (2016).
- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
- I. Bengtsson and K. Życzkowski, Probability and statistics, in Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2020) p. 25–28.
- E. L. Lehmann and G. Casella, Theory of point estimation (Springer, 1998) p. 115.
- C. R. Rao, Information and the accuracy attainable in the estimation of statistical parameters, in Breakthroughs in Statistics: Foundations and Basic Theory, edited by S. Kotz and N. L. Johnson (Springer New York, New York, NY, 1992) pp. 235–247.
- J. Huang, M. Zhuang, and C. Lee, Entanglement-enhanced quantum metrology: from standard quantum limit to heisenberg limit, arXiv preprint arXiv:2402.03572 (2024).
- E. Bach and J. O. Shallit, The euclidean algorithm: Worst-cases analysis, in Algorithmic Number Theory, Vol. 1 (MIT Press, 1997) p. 68–70.
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers (Clarendon Press, 1960).
- M. G. A. Paris, Quantum estimation for quantum technology, International Journal of Quantum Information 07, 125 (2009).
- Nicholas J. C. Papadopoulos (3 papers)
- Jarrod T. Reilly (13 papers)
- John Drew Wilson (10 papers)
- Murray J. Holland (31 papers)