Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
461 tokens/sec
Kimi K2 via Groq Premium
212 tokens/sec
2000 character limit reached

3D Volumetric Super-Resolution in Radiology Using 3D RRDB-GAN (2402.04171v1)

Published 6 Feb 2024 in eess.IV and cs.CV

Abstract: This study introduces the 3D Residual-in-Residual Dense Block GAN (3D RRDB-GAN) for 3D super-resolution for radiology imagery. A key aspect of 3D RRDB-GAN is the integration of a 2.5D perceptual loss function, which contributes to improved volumetric image quality and realism. The effectiveness of our model was evaluated through 4x super-resolution experiments across diverse datasets, including Mice Brain MRH, OASIS, HCP1200, and MSD-Task-6. These evaluations, encompassing both quantitative metrics like LPIPS and FID and qualitative assessments through sample visualizations, demonstrate the models effectiveness in detailed image analysis. The 3D RRDB-GAN offers a significant contribution to medical imaging, particularly by enriching the depth, clarity, and volumetric detail of medical images. Its application shows promise in enhancing the interpretation and analysis of complex medical imagery from a comprehensive 3D perspective.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.