Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vector Approximate Message Passing With Arbitrary I.I.D. Noise Priors (2402.04111v1)

Published 6 Feb 2024 in cs.IT and math.IT

Abstract: Approximate message passing (AMP) algorithms are devised under the Gaussianity assumption of the measurement noise vector. In this work, we relax this assumption within the vector AMP (VAMP) framework to arbitrary independent and identically distributed (i.i.d.) noise priors. We do so by rederiving the linear minimum mean square error (LMMSE) to accommodate both the noise and signal estimations within the message passing steps of VAMP. Numerical results demonstrate how our proposed algorithm handles non-Gaussian noise models as compared to VAMP. This extension to general noise priors enables the use of AMP algorithms in a wider range of engineering applications where non-Gaussian noise models are more appropriate.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com