Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-class Road Defect Detection and Segmentation using Spatial and Channel-wise Attention for Autonomous Road Repairing (2402.04064v1)

Published 6 Feb 2024 in cs.CV and cs.AI

Abstract: Road pavement detection and segmentation are critical for developing autonomous road repair systems. However, developing an instance segmentation method that simultaneously performs multi-class defect detection and segmentation is challenging due to the textural simplicity of road pavement image, the diversity of defect geometries, and the morphological ambiguity between classes. We propose a novel end-to-end method for multi-class road defect detection and segmentation. The proposed method comprises multiple spatial and channel-wise attention blocks available to learn global representations across spatial and channel-wise dimensions. Through these attention blocks, more globally generalised representations of morphological information (spatial characteristics) of road defects and colour and depth information of images can be learned. To demonstrate the effectiveness of our framework, we conducted various ablation studies and comparisons with prior methods on a newly collected dataset annotated with nine road defect classes. The experiments show that our proposed method outperforms existing state-of-the-art methods for multi-class road defect detection and segmentation methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. Department of Transport (United Kingdom), “Road safety statistics,” May 25, 2022. [Online]. Available: https://www.gov.uk/government/statistical-data-sets/reported-road-accidents-vehicles-and-casualties-tables-for-great-britain
  2. H. Wang, I. Al-Saadi, P. Lu, and A. Jasim, “Quantifying greenhouse gas emission of asphalt pavement preservation at construction and use stages using life-cycle assessment,” International Journal of Sustainable Transportation, vol. 14, no. 1, pp. 25–34, 2020.
  3. I. Al-Saadi, H. Wang, X. Chen, P. Lu, and A. Jasim, “Multi-objective optimization of pavement preservation strategy considering agency cost and environmental impact,” International Journal of Sustainable Transportation, vol. 15, no. 11, pp. 826–836, 2021.
  4. I. Katsamenis, M. Bimpas, E. Protopapadakis, C. Zafeiropoulos, D. Kalogeras, A. Doulamis, N. Doulamis, C. Martín-Portugués Montoliu, Y. Handanos, F. Schmidt, et al., “Robotic maintenance of road infrastructures: The heron project,” in Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments, 2022, pp. 628–635.
  5. M. Eskandari Torbaghan, B. Kaddouh, M. Abdellatif, N. Metje, J. Liu, R. Jackson, C. Rogers, D. Chapman, R. Fuentes, M. Miodownik, et al., “Application of robotic and autonomous systems for road defect detection and repair-a position paper on future road asset management.”
  6. S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, “Similarity of neural network representations revisited,” in International conference on machine learning.   PMLR, 2019, pp. 3519–3529.
  7. S. Li and X. Zhao, “Convolutional neural networks-based crack detection for real concrete surface,” in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018, vol. 10598.   SPIE, 2018, pp. 955–961.
  8. J. Yu, K. C. Yow, and M. Jeon, “Joint representation learning of appearance and motion for abnormal event detection,” Machine Vision and Applications, vol. 29, no. 7, pp. 1157–1170, 2018.
  9. J. Yu, D. Y. Kim, Y. Lee, and M. Jeon, “Unsupervised pixel-level road defect detection via adversarial image-to-frequency transform,” in 2020 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2020, pp. 1708–1713.
  10. R. Fan, M. J. Bocus, Y. Zhu, J. Jiao, L. Wang, F. Ma, S. Cheng, and M. Liu, “Road crack detection using deep convolutional neural network and adaptive thresholding,” in 2019 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2019, pp. 474–479.
  11. D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, and Y. Sekimoto, “Rdd2020: An annotated image dataset for automatic road damage detection using deep learning,” Data in brief, vol. 36, p. 107133, 2021.
  12. X. Zhang, X. Xia, N. Li, M. Lin, J. Song, and N. Ding, “Exploring the tricks for road damage detection with a one-stage detector,” in 2020 IEEE International Conference on Big Data (Big Data).   IEEE, 2020, pp. 5616–5621.
  13. F. Wan, C. Sun, H. He, G. Lei, L. Xu, and T. Xiao, “Yolo-lrdd: A lightweight method for road damage detection based on improved yolov5s,” EURASIP Journal on Advances in Signal Processing, vol. 2022, no. 1, p. 98, 2022.
  14. Y. He, Z. Jin, J. Zhang, S. Teng, G. Chen, X. Sun, and F. Cui, “Pavement surface defect detection using mask region-based convolutional neural networks and transfer learning,” Applied Sciences, vol. 12, no. 15, p. 7364, 2022.
  15. K. Zhang, M. Zheng, Q. Yu, and Y. Liu, “Multi-class pavement disease recognition using object detection and segmentation,” in 2022 12th International Conference on Information Science and Technology (ICIST).   IEEE, 2022, pp. 211–216.
  16. H. Dong, K. Song, Y. He, J. Xu, Y. Yan, and Q. Meng, “Pga-net: Pyramid feature fusion and global context attention network for automated surface defect detection,” IEEE Transactions on Industrial Informatics, vol. 16, no. 12, pp. 7448–7458, 2019.
  17. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2961–2969.
  18. T. Liang, X. Chu, Y. Liu, Y. Wang, Z. Tang, W. Chu, J. Chen, and H. Ling, “Cbnet: A composite backbone network architecture for object detection,” IEEE Transactions on Image Processing, vol. 31, pp. 6893–6906, 2022.
  19. Y. Lee and J. Park, “Centermask: Real-time anchor-free instance segmentation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 13 906–13 915.
  20. Q. Zou, Y. Cao, Q. Li, Q. Mao, and S. Wang, “Cracktree: Automatic crack detection from pavement images,” Pattern Recognition Letters, vol. 33, no. 3, pp. 227–238, 2012.
  21. D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance segmentation,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 9157–9166.
  22. Q. Li and X. Liu, “Novel approach to pavement image segmentation based on neighboring difference histogram method,” in 2008 Congress on Image and Signal Processing.   IEEE, pp. 792–796. [Online]. Available: http://ieeexplore.ieee.org/document/4566413/
  23. N. Tanaka and K. Uematsu, “A crack detection method in road surface images using morphology.” pp. 154–157.
  24. Y. Maode, B. Shaobo, X. Kun, and H. Yuyao, “Pavement crack detection and analysis for high-grade highway,” in 2007 8th International Conference on Electronic Measurement and Instruments.   IEEE, pp. 4–548–4–552. [Online]. Available: http://ieeexplore.ieee.org/document/4351202/
  25. N. T. Sy, M. Avila, S. Begot, and J. C. Bardet, “Detection of defects in road surface by a vision system,” in MELECON 2008 - The 14th IEEE Mediterranean Electrotechnical Conference.   IEEE, pp. 847–851. [Online]. Available: http://ieeexplore.ieee.org/document/4618541/
  26. T. S. Nguyen, M. Avila, and S. Begot, “Automatic detection and classification of defect on road pavement using anisotropy measure,” in 2009 17th European Signal Processing Conference, pp. 617–621. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7077799
  27. H. Oliveira and P. Lobato, “Supervised crack detection and classification in images of road pavement flexible surfaces,” in Recent Advances in Signal Processing, A. A, Ed.   InTech. [Online]. Available: http://www.intechopen.com/books/recent-advances-in-signal-processing/supervised-crack-detection-and-classification-in-images-of-road-pavement-flexible-surfaces
  28. A. Cord and S. Chambon, “Automatic road defect detection by textural pattern recognition based on AdaBoost: Automatic road defect detection,” vol. 27, no. 4, pp. 244–259. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.2011.00736.x
  29. L. Breiman, “Random forests,” vol. 45, no. 1, pp. 5–32. [Online]. Available: https://doi.org/10.1023/A:1010933404324
  30. P. Prasanna, K. J. Dana, N. Gucunski, B. B. Basily, H. M. La, R. S. Lim, and H. Parvardeh, “Automated crack detection on concrete bridges,” vol. 13, no. 2, pp. 591–599. [Online]. Available: http://ieeexplore.ieee.org/document/6917066/
  31. M. S. Kaseko and S. G. Ritchie, “A neural network-based methodology for pavement crack detection and classification,” vol. 1, no. 4, pp. 275–291. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0968090X9390002W
  32. S. Liu, J. Huang, J. Sung, and C. Lee, “Detection of cracks using neural networks and computational mechanics,” vol. 191, pp. 2831–2845.
  33. J. Zhong, Z. Liu, Z. Han, Y. Han, and W. Zhang, “A CNN-based defect inspection method for catenary split pins in high-speed railway,” vol. 68, no. 8, pp. 2849–2860. [Online]. Available: https://ieeexplore.ieee.org/document/8482333/
  34. J. Yu, H. Oh, S. Fichera, P. Paoletti, and S. Luo, “Multi-source domain adaptation for unsupervised road defect segmentation,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5638–5644.
  35. W. Qiao, Q. Liu, X. Wu, B. Ma, and G. Li, “Automatic pixel-level pavement crack recognition using a deep feature aggregation segmentation network with a scSE attention mechanism module,” vol. 21, no. 9, p. 2902, number: 9 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/21/9/2902
  36. J. C. Ong, S. L. Lau, M.-Z. Ismadi, and X. Wang, “Feature pyramid network with self-guided attention refinement module for crack segmentation,” vol. 22, no. 1, pp. 672–688, publisher: SAGE Publications. [Online]. Available: https://doi.org/10.1177/14759217221089571
  37. J. König, M. David Jenkins, P. Barrie, M. Mannion, and G. Morison, “A convolutional neural network for pavement surface crack segmentation using residual connections and attention gating,” in 2019 IEEE International Conference on Image Processing (ICIP), pp. 1460–1464, ISSN: 2381-8549.
  38. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need.” [Online]. Available: http://arxiv.org/abs/1706.03762
  39. H. Liu, X. Miao, C. Mertz, C. Xu, and H. Kong, “CrackFormer: Transformer network for fine-grained crack detection,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV).   IEEE, pp. 3763–3772. [Online]. Available: https://ieeexplore.ieee.org/document/9711107/
  40. F. Guo, Y. Qian, J. Liu, and H. Yu, “Pavement crack detection based on transformer network,” vol. 145, p. 104646. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0926580522005167
  41. E. Asadi Shamsabadi, C. Xu, A. S. Rao, T. Nguyen, T. Ngo, and D. Dias-da Costa, “Vision transformer-based autonomous crack detection on asphalt and concrete surfaces,” vol. 140, p. 104316. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0926580522001893
  42. W. Wang and C. Su, “Automatic concrete crack segmentation model based on transformer,” vol. 139, p. 104275. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0926580522001480
  43. R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587.
  44. R. Girshick, “Fast r-CNN.” [Online]. Available: http://arxiv.org/abs/1504.08083
  45. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-CNN: Towards real-time object detection with region proposal networks,” vol. 39, no. 6, pp. 1137–1149.
  46. X. Xu, M. Zhao, P. Shi, R. Ren, X. He, X. Wei, and H. Yang, “Crack detection and comparison study based on faster r-CNN and mask r-CNN,” vol. 22, no. 3, p. 1215. [Online]. Available: https://www.mdpi.com/1424-8220/22/3/1215
  47. W. Wang, B. Wu, S. Yang, and Z. Wang, “Road damage detection and classification with faster r-CNN,” in 2018 IEEE International Conference on Big Data (Big Data).   IEEE, pp. 5220–5223. [Online]. Available: https://ieeexplore.ieee.org/document/8622354/
  48. D. Li, Q. Xie, X. Gong, Z. Yu, J. Xu, Y. Sun, and J. Wang, “Automatic defect detection of metro tunnel surfaces using a vision-based inspection system,” vol. 47, p. 101206. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1474034620301750
  49. H. Nam and H.-E. Kim, “Batch-instance normalization for adaptively style-invariant neural networks,” Advances in Neural Information Processing Systems, vol. 31, 2018.
  50. Ç. F. Özgenel and A. G. Sorguç, “Performance comparison of pretrained convolutional neural networks on crack detection in buildings,” in Isarc. proceedings of the international symposium on automation and robotics in construction, vol. 35.   IAARC Publications, 2018, pp. 1–8.
  51. K. Liu, G. Yang, J. Zhang, Z. Zhao, X. Chen, and B. M. Chen, “Datasets and methods for boosting infrastructure inspection: A survey on defect segmentation and detection,” in 2022 IEEE 17th international conference on control & automation (ICCA).   IEEE, 2022, pp. 23–30.
  52. Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer convolutional features for edge detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 3000–3009.
  53. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
  54. F. Yang, L. Zhang, S. Yu, D. Prokhorov, X. Mei, and H. Ling, “Feature pyramid and hierarchical boosting network for pavement crack detection,” IEEE Transactions on Intelligent Transportation Systems, 2019.
  55. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention.   Springer, 2015, pp. 234–241.
  56. D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, H. Omata, T. Kashiyama, and Y. Sekimoto, “Global road damage detection: State-of-the-art solutions,” in 2020 IEEE International Conference on Big Data (Big Data).   IEEE, 2020, pp. 5533–5539.
  57. L. Ke, M. Danelljan, X. Li, Y.-W. Tai, C.-K. Tang, and F. Yu, “Mask transfiner for high-quality instance segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 4412–4421.

Summary

We haven't generated a summary for this paper yet.