Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ramification filtration via deformations, II (2402.04053v5)

Published 6 Feb 2024 in math.NT

Abstract: Let $\mathcal K$ be a field of formal Laurent series with coefficients in a finite field of characteristic $p$. For $M\ge 1$, let $\mathcal G_{<p,M}$ be the maximal quotient of the Galois group of $\mathcal K$ of period $pM$ and nilpotent class $<p$ and ${\mathcal G_{<p,M}{(v)}}_{v\geqslant 0}$ -- the ramification subgroups in upper numbering. Let $\mathcal G_{<p,M}=G(\mathcal L)$ be the identification of nilpotent Artin-Schreier theory: here $G(\mathcal L)$ is the group obtained from a suitable profinite Lie $\mathbb{Z}/pM$-algebra $\mathcal L$ via the Campbell-Hausdorff composition law. We develop new techniques to obtain a ``geometrical'' construction of the ideals $\mathcal L{(v)}$ such that $G(\mathcal L{(v)})=\mathcal G_{<p,M}{(v)}$. Given $v_0\geqslant 1$, we construct a decreasing central filtration $\mathcal L(w)$, $1\leqslant w\leqslant p$, on $\mathcal L$, an epimorphism of Lie $\mathbb{Z}/pM$-algebras $\bar{\mathcal V}:\bar{\mathcal L}{\dag }\to \bar{\mathcal L}:=\mathcal L/\mathcal L(p)$, and a unipotent action $\Omega $ of $\mathbb{Z} /pM$ on $\bar{\mathcal L}{\dag }$, which induces the identity action on $\bar{\mathcal L}$. Suppose $d\Omega =B{\dag }$, where $B{\dag }\in\operatorname{Diff}\bar{\mathcal L}{\dag }$, and $\bar{\mathcal L}{\dag [v_0]}$ is the ideal of $\bar{\mathcal L}{\dag }$ generated by the elements of $B{\dag }(\bar{\mathcal L}{\dag })$. Our main result states that the ramification ideal $\mathcal L{(v_0)}$ appears as the preimage of the ideal in $\bar{\mathcal L}$ generated by $\bar{\mathcal V}B{\dag }(\bar{\mathcal L}{\dag [v_0]})$. In the last section we apply this to the explicit construction of generators of $\bar{\mathcal L}{(v_0)}$. The paper justifies a geometrical origin of ramification subgroups of $\Gamma _K$ and can be used for further developing of non-abelian local class field theory.

Citations (3)

Summary

We haven't generated a summary for this paper yet.