Papers
Topics
Authors
Recent
2000 character limit reached

Explicit Flow Matching: On The Theory of Flow Matching Algorithms with Applications

Published 5 Feb 2024 in cs.LG | (2402.03232v2)

Abstract: This paper proposes a novel method, Explicit Flow Matching (ExFM), for training and analyzing flow-based generative models. ExFM leverages a theoretically grounded loss function, ExFM loss (a tractable form of Flow Matching (FM) loss), to demonstrably reduce variance during training, leading to faster convergence and more stable learning. Based on theoretical analysis of these formulas, we derived exact expressions for the vector field (and score in stochastic cases) for model examples (in particular, for separating multiple exponents), and in some simple cases, exact solutions for trajectories. In addition, we also investigated simple cases of diffusion generative models by adding a stochastic term and obtained an explicit form of the expression for score. While the paper emphasizes the theoretical underpinnings of ExFM, it also showcases its effectiveness through numerical experiments on various datasets, including high-dimensional ones. Compared to traditional FM methods, ExFM achieves superior performance in terms of both learning speed and final outcomes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.