Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nagata Dimension and Lipschitz Extensions Into Quasi-Banach Spaces (2402.03189v1)

Published 5 Feb 2024 in math.FA

Abstract: Given two metric spaces $\mathcal N \subseteq \mathcal M$ in inclusion and $0<p\leq 1$, we wish to determine the smallest constant $\mathfrak{t}_p (\mathcal N, \mathcal M)$ such that any Lipschitz map $f: \mathcal N \to Z$ into any $p$-Banach space $Z$ can be extended to a Lipschitz map $f' : \mathcal M \to Z$ satisfying $\operatorname{Lip} f' \leq \mathfrak{t}_p (\mathcal N, \mathcal M)\cdot \operatorname{Lip} f$. In this article, we prove that if $\mathcal N$ has finite Nagata dimension at most $d$ with constant $\gamma$, then $\mathfrak{t}_p (\mathcal N, \mathcal M) \lesssim_p \gamma \cdot (d+1){1/p -1} \cdot \log (d+2)$ for all $0<p\leq 1$. We show that examples of spaces with finite Nagata dimension include doubling spaces, as well as minor-excluded metric graphs. We also establish that the constant $\mathfrak{t}_p (\mathcal N, \mathcal M)$ generally increases as $p$ approaches zero.

Summary

We haven't generated a summary for this paper yet.