Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Circular motion of non-collinear spin textures in Corbino disks: Dynamics of Néel- versus Bloch-type skyrmions and skyrmioniums (2402.03023v2)

Published 5 Feb 2024 in cond-mat.mes-hall

Abstract: Magnetic skyrmions are nano-scale magnetic whirls that can be driven by currents via spin torques. They are promising candidates for spintronic devices such as the racetrack memory, where a motion along the uniform current is typically desired. However, for spin torque nano-oscillators in Corbino disks, the goal is to achieve a circular motion, perpendicular to the radially applied current. As we show, based on analytical calculations and micromagnetic simulations, Bloch skyrmions engage in a circular motion with frequencies in the MHz range when driven by spin-orbit torques. In contrast, N\'eel skyrmions get stuck at the edges of the disk. Our analysis reveals that the antagonistic dynamics between Bloch- and N\'eel-type magnetic textures arise from their helicity. Furthermore, we find that skyrmioniums, which are topologically trivial variations of skyrmions, move even faster and allow an increase in the current density without being pushed toward the edges of the disk. When driven by spin-transfer torques instead, Bloch and N\'eel skyrmions no longer exhibit different dynamics. Instead, they move along a circular trajectory due to the skyrmion Hall effect caused by their topological charge. Consequently, the topologically trivial skyrmioniums inevitably become trapped at the disk edge in this scenario. To provide a comprehensive understanding, our study also examines currents applied tangentially, further enriching our insights into skyrmion dynamics and appropriate current injection methods for skyrmion-based devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Kern, L.-M. et al. Deterministic generation and guided motion of magnetic skyrmions by focused He+-ion irradiation. Nano Letters 22, 4028–4035 (2022).
  2. Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device. Scientific reports 9, 12119 (2019).
  3. Jonietz, F. et al. Spin transfer torques in mnsi at ultralow current densities. Science 330, 1648–1651 (2010).
  4. Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nature Physics 13, 162–169 (2017).
  5. Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved x-ray microscopy. Nature Physics 13, 170–175 (2017).
  6. Edge instabilities and skyrmion creation in magnetic layers. New Journal of Physics 18, 065006 (2016).
  7. Schäffer, A. F. et al. Rotating edge-field driven processing of chiral spin textures in racetrack devices. Scientific Reports 10, 20400 (2020).
  8. Yu, G. et al. Room-temperature creation and spin–orbit torque manipulation of skyrmions in thin films with engineered asymmetry. Nano letters 16, 1981–1988 (2016).
  9. Skyrmion motion in magnetic anisotropy gradients: Acceleration caused by deformation. Physical Review B 108, 144438 (2023).
  10. Chiral skyrmions in an anisotropy gradient. Physical Review B 98, 024421 (2018).
  11. Dmi-gradient-driven skyrmion motion. ACS Applied Electronic Materials 4, 3205–3211 (2022).
  12. Skyrmions on the track. Nature Nanotechnology 8, 152–156 (2013).
  13. Magnetic domain propagation circuit (1969). US Patent 3,460,116.
  14. Magnetic bubble mass memory. IEEE Transactions on Magnetics 11, 21 (1975).
  15. Parkin, S. S. P. Shiftable magnetic shift register and method of using the same (2004). US Patent 6,834,005.
  16. Li, S. et al. Magnetic skyrmion-based artificial neuron device. Nanotechnology 28, 31LT01 (2017).
  17. Biskyrmion-based artificial neuron. Neuromorphic Computing and Engineering 3, 014012 (2023).
  18. Audio classification with skyrmion reservoirs. Advanced Intelligent Systems 5, 2200388 (2023).
  19. Resonate and fire neuron with fixed magnetic skyrmions. Journal of Applied Physics 124 (2018).
  20. Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nature Electronics 3, 148–155 (2020).
  21. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Physics 7, 713–718 (2011).
  22. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
  23. Overcoming the speed limit in skyrmion racetrack devices by suppressing the skyrmion hall effect. Physical Review B 99, 020405 (2019).
  24. Juge, R. et al. Helium ions put magnetic skyrmions on the track. Nano Letters 21, 2989–2996 (2021).
  25. Ahrens, V. et al. Skyrmion velocities in FIB irradiated W/CoFeB/MgO thin films. AIP Advances 12, 035325 (2022).
  26. Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles. Physics Reports 895, 1–28 (2021).
  27. Yu, X. et al. Biskyrmion states and their current-driven motion in a layered manganite. Nature communications 5, 3198 (2014).
  28. Wang, W. et al. A centrosymmetric hexagonal magnet with superstable biskyrmion magnetic nanodomains in a wide temperature range of 100–340 k. Advanced Materials 28, 6887–6893 (2016).
  29. Finazzi, M. et al. Laser-induced magnetic nanostructures with tunable topological properties. Physical review letters 110, 177205 (2013).
  30. Zheng, F. et al. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk. Physical review letters 119, 197205 (2017).
  31. Real-space observation of skyrmionium in a ferromagnet-magnetic topological insulator heterostructure. Nano letters 18, 1057–1063 (2018).
  32. Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017).
  33. Skyrmion ratchet propagation: utilizing the skyrmion hall effect in ac racetrack storage devices. Scientific reports 11, 3020 (2021).
  34. Zhang, S. et al. Manipulation of skyrmion motion by magnetic field gradients. Nature communications 9, 2115 (2018).
  35. Confinement of stable skyrmionium and skyrmion state in ultrathin nanoring. Physica B: Condensed Matter 618, 413144 (2021).
  36. Scalable magnetic skyrmions in nanostructures. Computational Materials Science 154, 481–487 (2018).
  37. Kechrakos, D. et al. Skyrmions in nanorings: A versatile platform for skyrmionics. Physical Review Applied 20, 044039 (2023).
  38. Skyrmion dynamics in concentric and eccentric nano-ring structures. IEEE Transactions on Magnetics 58, 1–6 (2021).
  39. Nontraditional movement behavior of skyrmion in a circular-ring nanotrack. Nanomaterials 13, 2977 (2023).
  40. Feng, Y. et al. A skyrmion-based spin-torque nano-oscillator with enhanced edge. Journal of Magnetism and Magnetic Materials 491, 165610 (2019).
  41. Jin, C. et al. High-frequency spin transfer nano-oscillator based on the motion of skyrmions in an annular groove. New Journal of Physics 22, 033001 (2020).
  42. Liang, X. et al. A spiking neuron constructed by the skyrmion-based spin torque nano-oscillator. Applied Physics Letters 116 (2020).
  43. Topological properties and dynamics of magnetic skyrmions. Nature nanotechnology 8, 899–911 (2013).
  44. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotechnology 8, 839–844 (2013).
  45. Mumax: A new high-performance micromagnetic simulation tool. Journal of Magnetism and Magnetic Materials 323, 2585–2591 (2011).
  46. Vansteenkiste, A. et al. The design and verification of mumax3. AIP Advances 4, 107133 (2014).
  47. Forming individual magnetic biskyrmions by merging two skyrmions in a centrosymmetric nanodisk. Scientific reports 9, 1–9 (2019).
  48. Asymmetric skyrmion hall effect in systems with a hybrid dzyaloshinskii-moriya interaction. Physical Review B 97, 224427 (2018).
  49. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Physical review letters 93, 127204 (2004).
  50. Domain-wall dynamics driven by adiabatic spin-transfer torques. Physical Review B 70, 024417 (2004).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com