Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Noisy Observations in Zero-Sum Games (2402.02861v1)

Published 5 Feb 2024 in cs.GT, cs.IT, math.IT, and stat.ML

Abstract: This paper studies an instance of zero-sum games in which one player (the leader) commits to its opponent (the follower) to choose its actions by sampling a given probability measure (strategy). The actions of the leader are observed by the follower as the output of an arbitrary channel. In response to that, the follower chooses its action based on its current information, that is, the leader's commitment and the corresponding noisy observation of its action. Within this context, the equilibrium of the game with noisy action observability is shown to always exist and the necessary conditions for its uniqueness are identified. Interestingly, the noisy observations have important impact on the cardinality of the follower's set of best responses. Under particular conditions, such a set of best responses is proved to be a singleton almost surely. The proposed model captures any channel noise with a density with respect to the Lebesgue measure. As an example, the case in which the channel is described by a Gaussian probability measure is investigated.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com