Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Time-velocity decay of solutions to the non-cutoff Boltzmann equation in the whole space (2402.02804v1)

Published 5 Feb 2024 in math.AP

Abstract: In this paper, we consider the perturbed solutions with polynomial tail in large velocities for the non-cutoff Boltzmann equation near global Maxwellians in the whole space. The global in time existence is proved in the weighted Sobolev spaces and the almost optimal time decay is obtained in Fourier transform based low-regularity spaces. The result shows a time-velocity decay structure of solutions that can be decomposed into two parts. One part allows the slow polynomial tail in large velocities, carries the initial data and enjoys the exponential or arbitrarily large polynomial time decay. The other part, with zero initial data, is dominated by the non-negative definite symmetric dissipation and has the exponential velocity decay but only the slow polynomial time decay.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.